
Alexander Nichols

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6366541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process. Journal of Volcanology and Geothermal Research, 2005, 142, 105-118.	2.1	150
2	Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth and Planetary Science Letters, 2002, 202, 77-87.	4.4	144
3	The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-recycling Model for HIMU OIB. Journal of Petrology, 2011, 52, 791-838.	2.8	125
4	Lead isotope analysis of melt inclusions by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 1393-1405.	3.0	96
5	Viscosity of peridotite liquid. Earth and Planetary Science Letters, 2004, 226, 127-138.	4.4	86
6	Limited latitudinal mantle plume motion for the Louisville hotspot. Nature Geoscience, 2012, 5, 911-917.	12.9	85
7	Controls on magmatic degassing along the Reykjanes Ridge with implications for the helium paradox. Earth and Planetary Science Letters, 2000, 183, 43-50.	4.4	84
8	Distribution of dissolved water in magmatic glass records growth and resorption of bubbles. Earth and Planetary Science Letters, 2014, 401, 1-11.	4.4	79
9	Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. American Mineralogist, 2008, 93, 1816-1822.	1.9	76
10	Mission Immiscible: Distinct Subduction Components Generate Two Primary Magmas at Pagan Volcano, Mariana Arc. Journal of Petrology, 2014, 55, 63-101.	2.8	69
11	Geochemical Differences of the Hawaiian Shield Lavas: Implications for Melting Process in the Heterogeneous Hawaiian Plume. Journal of Petrology, 2009, 50, 1553-1573.	2.8	68
12	Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions. Geochimica Et Cosmochimica Acta, 2017, 208, 63-85.	3.9	68
13	Surface tension driven processes densify and retain permeability in magma and lava. Earth and Planetary Science Letters, 2016, 433, 116-124.	4.4	63
14	Hyperquenched volcanic glass from Loihi Seamount, Hawaii. Earth and Planetary Science Letters, 2008, 270, 54-62.	4.4	62
15	Cooling rate correction of paleointensity determination for volcanic glasses by relaxation geospeedometry. Earth and Planetary Science Letters, 2006, 243, 282-292.	4.4	59
16	Petrogenesis of Late Cenozoic basalts from North Hainan Island: Constraints from melt inclusions and their host olivines. Geochimica Et Cosmochimica Acta, 2015, 152, 89-121.	3.9	59
17	Advances in Fourier transform infrared spectroscopy of natural glasses: From sample preparation to data analysis. Lithos, 2014, 206-207, 52-64.	1.4	58
18	Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals. Chemical Geology, 2007, 242, 371-384.	3.3	56

ALEXANDER NICHOLS

#	Article	IF	CITATIONS
19	Accounting for the species-dependence of the 3500 cm ^{â^{^,1}1} H ₂ O _t infrared molar absorptivity coefficient: Implications for hydrated volcanic glasses. American Mineralogist, 2017, 102, 1677-1689.	1.9	54
20	Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting. Earth and Planetary Science Letters, 2001, 188, 383-398.	4.4	47
21	The influence of H2O and CO2 on the glass transition temperature: insights into the effects of volatiles on magma viscosity. European Journal of Mineralogy, 2007, 19, 657-669.	1.3	45
22	Cooling rates of basaltic hyaloclastites and pillow lava glasses from the HSDP2 drill core. Geochimica Et Cosmochimica Acta, 2009, 73, 1052-1066.	3.9	41
23	Lava balloons—peculiar products of basaltic submarine eruptions. Bulletin of Volcanology, 2012, 74, 1379-1393.	3.0	34
24	Timescales of texture development in a cooling lava dome. Geochimica Et Cosmochimica Acta, 2013, 114, 72-80.	3.9	34
25	Experiments and models on H2O retrograde solubility in volcanic systems. American Mineralogist, 2015, 100, 774-786.	1.9	33
26	Advent of Continents: A New Hypothesis. Scientific Reports, 2016, 6, 33517.	3.3	33
27	Time-and temperature-dependent conduit wall porosity: A key control on degassing and explosivity at Tarawera volcano, New Zealand. Earth and Planetary Science Letters, 2010, 299, 126-137.	4.4	29
28	The Tectonomagmatic Source of Ore Metals and Volatile Elements in the Southern Kermadec Arc. Economic Geology, 2012, 107, 1539-1556.	3.8	25
29	The missing half of the subduction factory: shipboard results from the Izu rear arc, IODP Expedition 350. International Geology Review, 2017, 59, 1677-1708.	2.1	23
30	New insights on the origin of flow bands in obsidian. , 2005, , .		22
31	Eruptive shearing of tube pumice: pure and simple. Solid Earth, 2016, 7, 1383-1393.	2.8	22
32	Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu–Bonin–Mariana Arc: Syntectonic granitic crust formation during back-arc rifting. Earth and Planetary Science Letters, 2015, 424, 84-94.	4.4	21
33	Nishinoshima volcano in the Ogasawara Arc: New continent from the ocean?. Island Arc, 2019, 28, e12285.	1.1	20
34	Cooling rates of lunar orange glass beads. Earth and Planetary Science Letters, 2018, 503, 88-94.	4.4	19
35	Geochemistry of volcanic glasses from the Louisville Seamount Trail (IODP Expedition 330): Implications for eruption environments and mantle melting. Geochemistry, Geophysics, Geosystems, 2014, 15, 1718-1738.	2.5	18
36	Melt inclusions reveal geochemical crossâ€arc variations and diversity within magma chambers feeding the Higashiâ€lzu Monogenetic Volcano Field, Izu Peninsula, Japan. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	14

ALEXANDER NICHOLS

#	Article	IF	CITATIONS
37	(210Pb/226Ra) variations during the 1994–2001 intracaldera volcanism at Rabaul Caldera. Journal of Volcanology and Geothermal Research, 2009, 184, 416-426.	2.1	13
38	Tracing of Cl input into the sub-arc mantle through the combined analysis of B, O and Cl isotopes in melt inclusions. Earth and Planetary Science Letters, 2019, 507, 30-39.	4.4	13
39	Heat capacity of hydrous trachybasalt from Mt Etna: comparison with CaAl2Si2O8 (An)–CaMgSi2O6 (Di) as basaltic proxy compositions. Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	12
40	Volcanoes of the Diamante cross-chain: evidence for a mid-crustal felsic magma body beneath the Southern Izu–Bonin–Mariana arc. Geological Society Special Publication, 2014, 385, 235-255.	1.3	7
41	The Origin of Late Cenozoic Magmatism in the South China Sea and Southeast Asia. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009686.	2.5	7
42	Incipient melt segregation as preserved in subaqueous pyroclasts. Geology, 2012, 40, 355-358.	4.4	6
43	The Mantle Transition Zone Hosts the Missing HIMU Reservoir Beneath Eastern China. Geophysical Research Letters, 2020, 47, e2020GL087260.	4.0	6
44	The Kulanaokuaiki-3 tephra, 900 CE: Products of a remarkably energetic pyroclastic eruption at Kīlauea Volcano, Hawaiʻi, USA. Bulletin of the Geological Society of America, 2019, 131, 1537-1554.	3.3	3
45	Provenance of the Pakawau Group and Farewell Formation (Late Cretaceous – Paleocene), Taranaki Basin, northwest Nelson, New Zealand. New Zealand Journal of Geology, and Geophysics, 2020, 63, 1-34.	1.8	3
46	Highly heterogeneous mantle caused by recycling of oceanic lithosphere from the mantle transition zone. Earth and Planetary Science Letters, 2022, 593, 117679.	4.4	2
47	The role of axial discontinuities in oceanic crustal evolution: Evidence from elemental and Mo Sr Nd Pb Hf isotopic compositions of rock suites from the Southwest Indian Ridge (42°–53°E). Marine Geology, 2021, 442, 106626.	2.1	1
48	Melt inclusion formation during olivine recrystallization: Evidence from stable isotopes. Earth and Planetary Science Letters, 2022, 592, 117638.	4.4	1