
Michiko Shirane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6366359/publications.pdf Version: 2024-02-01

MICHIKO SHIDANE

#	Article	IF	CITATIONS
1	Molecular machinery regulating organelle dynamics during axon growth and guidance. Seminars in Cell and Developmental Biology, 2022, , .	2.3	0
2	Protrudin regulates FAK activation, endothelial cell migration and angiogenesis. Cellular and Molecular Life Sciences, 2022, 79, 220.	2.4	7
3	Protrudin-deficient mice manifest depression-like behavior with abnormalities in activity, attention, and cued fear-conditioning. Molecular Brain, 2020, 13, 146.	1.3	8
4	Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation. Nature Communications, 2020, 11, 4576.	5.8	52
5	Lipid Transfer–Dependent Endosome Maturation Mediated by Protrudin and PDZD8 in Neurons. Frontiers in Cell and Developmental Biology, 2020, 8, 615600.	1.8	10
6	Roles of protrudin at interorganelle membrane contact sites. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 312-320.	1.6	6
7	<scp>TMEM</scp> 55B contributes to lysosomal homeostasis and amino acid–induced <scp>mTORC</scp> 1 activation. Genes To Cells, 2018, 23, 418-434.	0.5	27
8	The Autism-Related Protein CHD8 Cooperates with C/EBPβ to Regulate Adipogenesis. Cell Reports, 2018, 23, 1988-2000.	2.9	22
9	Nuclear–cytoplasmic shuttling protein PP2A ^{B56} contributes to mTORC1â€dependent dephosphorylation of FOXK1. Genes To Cells, 2018, 23, 599-605.	0.5	8
10	SRRM4-dependent neuron-specific alternative splicing of protrudin transcripts regulates neurite outgrowth. Scientific Reports, 2017, 7, 41130.	1.6	22
11	Protrudin Regulates Endoplasmic Reticulum Morphology and Function Associated with the Pathogenesis of Hereditary Spastic Paraplegia. Journal of Biological Chemistry, 2014, 289, 12946-12961.	1.6	55
12	Role of the ANKMY2-FKBP38 Axis in Regulation of the Sonic Hedgehog (Shh) Signaling Pathway. Journal of Biological Chemistry, 2014, 289, 25639-25654.	1.6	15
13	Identification and characterization of a neuronâ€specific isoform of protrudin. Genes To Cells, 2014, 19, 97-111.	0.5	25
14	Selective escape of proteins from the mitochondria during mitophagy. Nature Communications, 2013, 4, 1410.	5.8	120
15	Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation. Molecular Biology of the Cell, 2011, 22, 4602-4620.	0.9	99
16	Promotion of Neurite Extension by Protrudin Requires Its Interaction with Vesicle-associated Membrane Protein-associated Protein. Journal of Biological Chemistry, 2009, 284, 13766-13777.	1.6	80
17	Regulation of apoptosis and neurite extension by FKBP38 is required for neural tube formation in the mouse. Genes To Cells, 2008, 13, 635-651.	0.5	39
18	Anchoring of the 26S proteasome to the organellar membrane by FKBP38. Genes To Cells, 2007, 12, 070606122915007-???.	0.5	47

MICHIKO SHIRANE

#	Article	IF	CITATIONS
19	Protrudin Induces Neurite Formation by Directional Membrane Trafficking. Science, 2006, 314, 818-821.	6.0	177
20	Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondrial Bcl-2. Human Molecular Genetics, 2005, 14, 1889-1902.	1.4	82
21	Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nature Cell Biology, 2003, 5, 28-37.	4.6	279
22	Down-Regulation of p27Kip1 Expression Is Required for Development and Function of T Cells. Journal of Immunology, 2001, 166, 304-312.	0.4	56
23	Down-regulation of p27 by Two Mechanisms, Ubiquitin-mediated Degradation and Proteolytic Processing. Journal of Biological Chemistry, 1999, 274, 13886-13893.	1.6	208
24	Common Pathway for the Ubiquitination of IκBα, IκBβ, and IκBε Mediated by the F-Box Protein FWD1. Journal of Biological Chemistry, 1999, 274, 28169-28174.	1.6	80
25	Mice Lacking p27Kip1 Display Increased Body Size, Multiple Organ Hyperplasia, Retinal Dysplasia, and Pituitary Tumors. Cell, 1996, 85, 707-720.	13.5	1,495