Gemma Guillazo-Blanch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6366259/publications.pdf

Version: 2024-02-01

516561 642610 37 633 16 23 citations g-index h-index papers 37 37 37 632 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cerebellar Posterior Interpositus Nucleus as an Enhancer of Classically Conditioned Eyelid Responses in Alert Cats. Journal of Neurophysiology, 2000, 84, 2680-2690.	0.9	72
2	Effects of electrical stimulation of the nucleus basalis on two-way active avoidance acquisition, retention, and retrieval. Behavioural Brain Research, 2004, 154, 41-54.	1.2	35
3	Effects of nucleus basalis magnocellularis stimulation on a socially transmitted food preference and c-Fos expression. Learning and Memory, 2006, 13, 783-793.	0.5	30
4	Muscarinic receptor blockade in ventral hippocampus and prelimbic cortex impairs memory for socially transmitted food preference. Hippocampus, 2009, 19, 446-455.	0.9	30
5	Nucleus basalis magnocellularis electrical stimulation facilitates two-way active avoidance retention, in rats. Brain Research, 2001, 900, 337-341.	1.1	28
6	Differential effects of muscarinic receptor blockade in prelimbic cortex on acquisition and memory formation of an odor-reward task. Learning and Memory, 2007, 14, 616-624.	0.5	28
7	Effects of Fimbria Lesions on Trace Two-Way Active Avoidance Acquisition and Retention in Rats. Neurobiology of Learning and Memory, 2002, 78, 406-425.	1.0	27
8	Muscarinic cholinergic receptor blockade in the rat prelimbic cortex impairs the social transmission of food preference. Neurobiology of Learning and Memory, 2007, 87, 659-668.	1.0	27
9	Electrolytic and ibotenic acid lesions of the nucleus basalis magnocellularis interrupt long-term retention, but not acquisition of two-way active avoidance, in rats. Experimental Brain Research, 2002, 142, 52-66.	0.7	26
10	Posttraining intracranial self-stimulation ameliorates the detrimental effects of parafascicular thalamic lesions on active avoidance in young and aged rats Behavioral Neuroscience, 2003, 117, 246-256.	0.6	26
11	Muscarinic transmission in the basolateral amygdala is necessary for the acquisition of socially transmitted food preferences in rats. Neurobiology of Learning and Memory, 2009, 91, 98-101.	1.0	21
12	d-cycloserine in the basolateral amygdala prevents extinction and enhances reconsolidation of odor-reward associative learning in rats. Neurobiology of Learning and Memory, 2013, 100, 1-11.	1.0	21
13	Intra-hippocampal d-cycloserine rescues decreased social memory, spatial learning reversal, and synaptophysin levels in aged rats. Psychopharmacology, 2018, 235, 1463-1477.	1.5	20
14	d-cycloserine prevents relational memory deficits and suppression of long-term potentiation induced by scopolamine in the hippocampus. European Neuropsychopharmacology, 2014, 24, 1798-1807.	0.3	19
15	The parafascicular nucleus and two-way active avoidance: effects of electrical stimulation and electrode implantation. Experimental Brain Research, 1999, 129, 0605-0614.	0.7	18
16	Effects of Habenular Lesions upon Two-Way Active Avoidance Conditioning in Rats. Neurobiology of Learning and Memory, 1997, 68, 68-74.	1.0	17
17	Excitotoxic lesions of the parafascicular nucleus produce deficits in a socially transmitted food preference. Neurobiology of Learning and Memory, 2006, 86, 256-263.	1.0	17
18	Differential site-specific effects of parafascicular stimulation on active avoidance in rats. Behavioural Brain Research, 1998, 93, 107-118.	1.2	14

#	Article	IF	Citations
19	Effects of parafascicular excitotoxic lesions on two-way active avoidance and odor-discrimination. Neurobiology of Learning and Memory, 2007, 88, 198-207.	1.0	14
20	Effects of Parafascicular Electrical Stimulation and Lesion upon Two-Way Active Avoidance in Rats. Neurobiology of Learning and Memory, 1995, 64, 215-225.	1.0	13
21	Intracranial self-stimulation in the parafascicular nucleus of the rat. Brain Research Bulletin, 1999, 48, 401-406.	1.4	13
22	Induction of c-Fos expression by electrical stimulation of the nucleus basalis magnocellularis. Neuroscience Letters, 2009, 449, 137-141.	1.0	12
23	D-cycloserine in Prelimbic Cortex Reverses Scopolamine-Induced Deficits in Olfactory Memory in Rats. PLoS ONE, 2013, 8, e70584.	1.1	12
24	Caloric restriction modulates the monoaminergic and glutamatergic systems in the hippocampus, and attenuates age-dependent spatial memory decline. Neurobiology of Learning and Memory, 2019, 166, 107107.	1.0	11
25	Facilitatory effects of thalamic reticular nucleus lesions on two-way active avoidance in rats. Experimental Brain Research, 1998, 118, 511-516.	0.7	9
26	d-Cycloserine in prelimbic cortex enhances relearning of an odor-reward associative task. Behavioural Brain Research, 2010, 213, 113-116.	1.2	9
27	Effects of Excitotoxic Lesion with Inhaled Anesthetics on Nervous System Cells of Rodents. Current Pharmaceutical Design, 2018, 24, 4-14.	0.9	9
28	Differential effects of parafascicular electrical stimulation on active avoidance depending on the retention time, in rats. Brain Research Bulletin, 2000, 52, 419-426.	1.4	8
29	Intracranial self-stimulation after memory reactivation: Immediate and late effects. Brain Research Bulletin, 2007, 74, 51-57.	1.4	7
30	Facilitatory and Detrimental Effects of Parafascicular Electrical Stimulation upon Two-Way Active Avoidance Conditioning in Rats. Neurobiology of Learning and Memory, 1995, 63, 209-212.	1.0	6
31	Learning deficits in an odor reward-task induced by parafascicular thalamic lesions are ameliorated by pretraining d-cycloserine in the prelimbic cortex. Behavioural Brain Research, 2013, 238, 289-292.	1.2	6
32	Parafascicular electrical stimulation attenuates nucleus basalis magnocellularis lesion-induced active avoidance retention deficit. Behavioural Brain Research, 2003, 144, 37-48.	1.2	5
33	Effects of muscarinic receptor antagonism in the basolateral amygdala on two-way active avoidance. Experimental Brain Research, 2011, 209, 455-464.	0.7	5
34	The AMPA receptor modulator \$18986 in the prelimbic cortex enhances acquisition and retention of an odor-reward association. Neuroscience Letters, 2013, 548, 105-109.	1.0	5
35	Observation of others' threat reactions recovers memories previously shaped by firsthand experiences. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
36	Parafascicular thalamic nucleus deep brain stimulation decreases NMDA receptor GluN1 subunit gene expression in the prefrontal cortex. Neuroscience, 2017, 348, 73-82.	1.1	4

#	Article	IF	CITATIONS
37	Effects of caloric restriction on monoaminergic neurotransmission, peripheral hormones, and olfactory memory in aged rats. Behavioural Brain Research, 2021, 409, 113328.	1.2	4