Donato A Di Monte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6365841/publications.pdf Version: 2024-02-01

		15495	22147
132	13,283	65	113
papers	citations	h-index	g-index
141	141	141	11539
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Sphingolipid changes in Parkinson L444P <i>GBA</i> mutation fibroblasts promote α-synuclein aggregation. Brain, 2022, 145, 1038-1051.	3.7	30
2	The proSAAS Chaperone Provides Neuroprotection and Attenuates Transsynaptic α-Synuclein Spread in Rodent Models of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 1463-1478.	1.5	2
3	Gender biased neuroprotective effect of Transferrin Receptor 2 deletion in multiple models of Parkinson's disease. Cell Death and Differentiation, 2021, 28, 1720-1732.	5.0	6
4	The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons. Cell Reports, 2021, 36, 109697.	2.9	14
5	Inhibition of microglial Î ² -glucocerebrosidase hampers the microglia-mediated antioxidant and protective response in neurons. Journal of Neuroinflammation, 2021, 18, 220.	3.1	11
6	Spreading of alpha-synuclein pathology from the gut to the brain in Parkinson's disease. International Review of Movement Disorders, 2021, 2, 155-191.	0.1	0
7	Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. Journal of Clinical Investigation, 2019, 129, 3738-3753.	3.9	126
8	Longâ€lasting pathological consequences of overexpressionâ€induced αâ€synuclein spreading in the rat brain. Aging Cell, 2018, 17, e12727.	3.0	25
9	In vivo models of alpha-synuclein transmission and propagation. Cell and Tissue Research, 2018, 373, 183-193.	1.5	51
10	Phosphorylation of Parkin at serine 65 is essential for its activation <i>in vivo</i> . Open Biology, 2018, 8, 180108.	1.5	81
11	Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson's disease. Cell Death and Disease, 2018, 9, 818.	2.7	85
12	LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nature Communications, 2018, 9, 3465.	5.8	121
13	Mesenchymal stromal SB623 cell implantation mitigates nigrostriatal dopaminergic damage in a mouse model of Parkinson's disease. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1835-1843.	1.3	5
14	Tipping Points and Endogenous Determinants of Nigrostriatal Degeneration by MPTP. Trends in Pharmacological Sciences, 2017, 38, 541-555.	4.0	58
15	Brain-to-stomach transfer of α-synuclein via vagal preganglionic projections. Acta Neuropathologica, 2017, 133, 381-393.	3.9	148
16	The L444P Gba1 mutation enhances alpha-synuclein induced loss of nigral dopaminergic neurons in mice. Brain, 2017, 140, 2706-2721.	3.7	52
17	Pesticides and Parkinson's Disease: Current Experimental and Epidemiological Evidence. Advances in Neurotoxicology, 2017, 1, 83-117.	0.7	15
18	Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice. Brain, 2016, 139, 856-870.	3.7	78

#	Article	IF	CITATIONS
19	Overview of Neurodegenerative Disorders and Susceptibility Factors in Neurodegenerative Processes. , 2015, , 197-210.		1
20	Neuron-to-neuron Î \pm -synuclein propagation in vivo is independent of neuronal injury. Acta Neuropathologica Communications, 2015, 3, 13.	2.4	75
21	Function and developmental origin of a mesocortical inhibitory circuit. Nature Neuroscience, 2015, 18, 872-882.	7.1	43
22	Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death and Disease, 2014, 5, e1209-e1209.	2.7	116
23	Neurodegeneration by Activation of the Microglial Complement-Phagosome Pathway. Journal of Neuroscience, 2014, 34, 8546-8556.	1.7	192
24	Evidence of oxidative stress in young and aged DJâ€lâ€deficient mice. FEBS Letters, 2013, 587, 1562-1570.	1.3	14
25	Oxidative and nitrative alphaâ€synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. Journal of Neurochemistry, 2013, 125, 491-511.	2.1	116
26	α-Synuclein Elevation in Human Neurodegenerative Diseases: Experimental, Pathogenetic, and Therapeutic Implications. Molecular Neurobiology, 2013, 47, 484-494.	1.9	45
27	Caudoâ€rostral brain spreading of αâ€synuclein through vagal connections. EMBO Molecular Medicine, 2013, 5, 1119-1127.	3.3	223
28	Increased α-synuclein phosphorylation and nitration in the aging primate substantia nigra. Cell Death and Disease, 2012, 3, e315-e315.	2.7	58
29	Restorative Effects of Platelet Derived Growth Factor-BB in Rodent Models of Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 49-63.	1.5	57
30	Lysosomal Degradation of α-Synuclein in Vivo. Journal of Biological Chemistry, 2010, 285, 13621-13629.	1.6	298
31	α-Synuclein Suppression by Targeted Small Interfering RNA in the Primate Substantia Nigra. PLoS ONE, 2010, 5, e12122.	1.1	138
32	Serine 129 Phosphorylation Reduces the Ability of α-Synuclein to Regulate Tyrosine Hydroxylase and Protein Phosphatase 2A in Vitro and in Vivo. Journal of Biological Chemistry, 2010, 285, 17648-17661.	1.6	105
33	Gene–environment interactions in Parkinson's disease and other forms of parkinsonism. NeuroToxicology, 2010, 31, 598-602.	1.4	63
34	Methionine oxidation stabilizes non-toxic oligomers of α-synuclein through strengthening the auto-inhibitory intra-molecular long-range interactions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 322-330.	1.8	85
35	Decreased α-synuclein expression in the aging mouse substantia nigra. Experimental Neurology, 2009, 220, 359-365.	2.0	39
36	Enhanced α-Synuclein Expression in Human Neurodegenerative Diseases: Pathogenetic and Therapeutic Implications. Current Protein and Peptide Science, 2009, 10, 476-482.	0.7	23

#	Article	IF	CITATIONS
37	Pathologic Modifications of α-Synuclein in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Treated Squirrel Monkeys. Journal of Neuropathology and Experimental Neurology, 2008, 67, 793-802.	0.9	68
38	MAO-B Elevation in Mouse Brain Astrocytes Results in Parkinson's Pathology. PLoS ONE, 2008, 3, e1616.	1.1	230
39	Paraquat Neurotoxicity Is Mediated by a Bak-dependent Mechanism. Journal of Biological Chemistry, 2008, 283, 3357-3364.	1.6	102
40	Macrophage Antigen Complex-1 Mediates Reactive Microgliosis and Progressive Dopaminergic Neurodegeneration in the MPTP Model of Parkinson's Disease. Journal of Immunology, 2008, 181, 7194-7204.	0.4	113
41	Paraquat Exposure Reduces Nicotinic Receptor-Evoked Dopamine Release in Monkey Striatum. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 124-129.	1.3	10
42	Letter regarding: "Paraquat: The Red Herring of Parkinson's Disease Research― Toxicological Sciences, 2008, 103, 215-216.	1.4	10
43	Paraquat-induced Neurodegeneration: a Model of Parkinson's Disease Risk Factors. , 2008, , 207-217.		1
44	Effect of 4-Hydroxy-2-nonenal Modification on $\hat{I}\pm$ -Synuclein Aggregation. Journal of Biological Chemistry, 2007, 282, 5862-5870.	1.6	166
45	The Etiopathogenesis of Parkinson Disease and Suggestions for Future Research. Part I. Journal of Neuropathology and Experimental Neurology, 2007, 66, 251-257.	0.9	104
46	The Etiopathogenesis of Parkinson Disease and Suggestions for Future Research. Part II. Journal of Neuropathology and Experimental Neurology, 2007, 66, 329-336.	0.9	41
47	Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiology of Aging, 2007, 28, 907-913.	1.5	127
48	Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Experimental Neurology, 2007, 204, 619-630.	2.0	120
49	The selective κ-opioid receptor agonist U50,488 reduces l-dopa-induced dyskinesias but worsens parkinsonism in MPTP-treated primates. Experimental Neurology, 2007, 205, 101-107.	2.0	38
50	Reduced Vesicular Storage of Dopamine Causes Progressive Nigrostriatal Neurodegeneration. Journal of Neuroscience, 2007, 27, 8138-8148.	1.7	346
51	Nicotine reduces levodopaâ€induced dyskinesias in lesioned monkeys. Annals of Neurology, 2007, 62, 588-596.	2.8	124
52	Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to α6β2* nAChRs. Journal of Neurochemistry, 2007, 100, 180-190.	2.1	52
53	Chronic ferritin expression within murine dopaminergic midbrain neurons results in a progressive age-related neurodegeneration. Brain Research, 2007, 1140, 188-194.	1.1	36
54	Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiology of Disease, 2007, 25, 392-400.	2.1	217

#	Article	IF	CITATIONS
55	Comparison of the neurotoxic effects of proteasomal inhibitors in primary mesencephalic cultures. Experimental Neurology, 2006, 202, 434-440.	2.0	24
56	Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration. Neuroscience, 2006, 141, 929-937.	1.1	64
57	Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. Journal of Neurochemistry, 2006, 98, 1866-1875.	2.1	113
58	Lack of nigrostriatal pathology in a rat model of proteasome inhibition. Annals of Neurology, 2006, 60, 256-260.	2.8	99
59	Nigrostriatal Dopaminergic Neurodegeneration in the Weaver Mouse Is Mediated via Neuroinflammation and Alleviated by Minocycline Administration. Journal of Neuroscience, 2006, 26, 11644-11651.	1.7	47
60	The Webcam system: a simple, automated, computer-based video system for quantitative measurement of movement in nonhuman primates. Journal of Neuroscience Methods, 2005, 145, 159-166.	1.3	31
61	Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. Journal of Neurochemistry, 2005, 93, 1030-1037.	2.1	229
62	Toxicity of Redox Cycling Pesticides in Primary Mesencephalic Cultures. Antioxidants and Redox Signaling, 2005, 7, 649-653.	2.5	53
63	Redox cycling of the herbicide paraquat in microglial cultures. Molecular Brain Research, 2005, 134, 52-56.	2.5	140
64	α-Synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiology of Disease, 2005, 20, 898-906.	2.1	111
65	Dyskinesias in normal squirrel monkeys induced by nomifensine and levodopa. Neuropharmacology, 2005, 48, 398-405.	2.0	14
66	Enhanced striatal opioid receptor-mediated G-protein activation in l-dopa-treated dyskinetic monkeys. Neuroscience, 2005, 132, 409-420.	1.1	48
67	Effect of the D3 Dopamine Receptor Partial Agonist BP897 [N-[4-(4-(2-Methoxyphenyl)piperazinyl)butyl]-2-naphthamide] on l-3,4-Dihydroxyphenylalanine-Induced Dyskinesias and Parkinsonism in Squirrel Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 770-777.	1.3	46
68	Aging of the nigrostriatal system in the squirrel monkey. Journal of Comparative Neurology, 2004, 471, 387-395.	0.9	105
69	Dopamine and Lâ€dopa disaggregate amyloid fibrils: implications for Parkinson's and Alzheimer's disease. FASEB Journal, 2004, 18, 962-964.	0.2	220
70	The environment and Parkinson's disease: is the nigrostriatal system preferentially targeted by neurotoxins?. Lancet Neurology, The, 2003, 2, 531-538.	4.9	320
71	Effects of <scp>l</scp> â€dopa and other amino acids against paraquatâ€induced nigrostriatal degeneration. Journal of Neurochemistry, 2003, 85, 82-86.	2.1	119
72	Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. European Journal of Neuroscience, 2003, 18, 589-600.	1.2	260

#	Article	IF	CITATIONS
73	Nuclear Localization of α-Synuclein and Its Interaction with Histonesâ€. Biochemistry, 2003, 42, 8465-8471.	1.2	299
74	Cerebrospinal fluid 3,4-dihydroxyphenylacetic acid level after tolcapone administration as an indicator of nigrostriatal degeneration. Experimental Neurology, 2003, 183, 173-179.	2.0	8
75	Genetic or Pharmacological Iron Chelation Prevents MPTP-Induced Neurotoxicity In Vivo. Neuron, 2003, 37, 899-909.	3.8	594
76	α-Synuclein Overexpression Protects against Paraquat-Induced Neurodegeneration. Journal of Neuroscience, 2003, 23, 3095-3099.	1.7	225
77	Behavioral and Neurochemical Effects of Wild-Type and Mutated Human α-Synuclein in Transgenic Mice. Experimental Neurology, 2002, 175, 35-48.	2.0	255
78	Environmental Risk Factors and Parkinson's Disease: Selective Degeneration of Nigral Dopaminergic Neurons Caused by the Herbicide Paraquat. Neurobiology of Disease, 2002, 10, 119-127.	2.1	706
79	The Herbicide Paraquat Causes Up-regulation and Aggregation of α-Synuclein in Mice. Journal of Biological Chemistry, 2002, 277, 1641-1644.	1.6	566
80	Increases in striatal preproenkephalin gene expression are associated with nigrostriatal damage but not L-DOPA-induced dyskinesias in the squirrel monkey. Neuroscience, 2002, 113, 213-220.	1.1	37
81	l-DOPA Does Not Cause Neurotoxicity in VMAT2 Heterozygote Knockout Mice. NeuroToxicology, 2002, 23, 611-619.	1.4	20
82	Environmental Factors in Parkinson's Disease. NeuroToxicology, 2002, 23, 487-502.	1.4	213
83	Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice. Journal of Neurochemistry, 2002, 83, 167-175.	2.1	85
84	Mechanistic Approaches to Parkinson's Disease Pathogenesis. Brain Pathology, 2002, 12, 499-510.	2.1	115
85	Lack of Nigral Pathology in Transgenic Mice Expressing Human α-Synuclein Driven by the Tyrosine Hydroxylase Promoter. Neurobiology of Disease, 2001, 8, 535-539.	2.1	273
86	Acute exposure to organochlorine pesticides does not affect striatal dopamine in mice. Neurotoxicity Research, 2001, 3, 537-543.	1.3	8
87	Levodopa induces dyskinesias in normal squirrel monkeys. Annals of Neurology, 2001, 50, 254-257.	2.8	64
88	Nicotine administration reduces striatal MPP+ levels in mice. Brain Research, 2001, 917, 219-224.	1.1	27
89	The role of environmental agents in Parkinson's disease. Clinical Neuroscience Research, 2001, 1, 419-426.	0.8	29
90	Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Movement Disorders, 2000, 15, 459-466.	2.2	162

#	Article	IF	CITATIONS
91	Increased striatal dopamine turnover following acute administration of rotenone to mice. Brain Research, 2000, 885, 283-288.	1.1	119
92	Autoradiographic analysis of dopamine receptor-stimulated [35S]GTPÎ ³ S binding in rat striatum. Brain Research, 2000, 885, 133-136.	1.1	11
93	Expression of D3 receptor messenger RNA and binding sites in monkey striatum and substantia nigra after nigrostriatal degeneration: effect of levodopa treatment. Neuroscience, 2000, 98, 263-273.	1.1	73
94	Autoradiographic analysis of N-methyl-d-aspartate receptor binding in monkey brain: effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and Levodopa treatment. Neuroscience, 2000, 99, 697-704.	1.1	14
95	Impaired Glutamate Clearance as a Consequence of Energy Failure Caused by MPP+ in Astrocytic Cultures. Toxicology and Applied Pharmacology, 1999, 158, 296-302.	1.3	37
96	7-Nitroindazole prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced ATP loss in the mouse striatum. Brain Research, 1999, 839, 41-48.	1.1	30
97	Novel α-Synuclein-Immunoreactive Proteins in Brain Samples from the Contursi Kindred, Parkinson's, and Alzheimer's Disease. Experimental Neurology, 1998, 154, 684-690.	2.0	48
98	Inhibition of Monoamine Oxidase Contributes to the Protective Effect of 7â€Nitroindazole Against MPTP Neurotoxicity. Journal of Neurochemistry, 1997, 69, 1771-1773.	2.1	78
99	Monoamine oxidase-dependent metabolism of dopamine in the striatum and substantia nigra of I-DOPA-treated monkeys. Brain Research, 1996, 738, 53-59.	1.1	71
100	Role of Nitric Oxide in Methamphetamine Neurotoxicity: Protection by 7â€Nitroindazole, an Inhibitor of Neuronal Nitric Oxide Synthase. Journal of Neurochemistry, 1996, 67, 2443-2450.	2.1	86
101	Iron-mediated bioactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in glial cultures. Glia, 1995, 15, 203-206.	2.5	44
102	Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on levels of glutamate and aspartate in the mouse brain. Brain Research, 1994, 647, 249-254.	1.1	6
103	Rapid ATP Loss Caused by Methamphetamine in the Mouse Striatum: Relationship Between Energy Impairment and Dopaminergic Neurotoxicity. Journal of Neurochemistry, 1994, 62, 2484-2487.	2.1	116
104	PCR Analysis of platelet mtDNA: Lack of specific changes in Parkinson's disease. Movement Disorders, 1993, 8, 74-82.	2.2	30
105	Chapter 36: Astrocytes and Parkinson's disease. Progress in Brain Research, 1992, 94, 429-436.	0.9	166
106	Role of Astrocytes in MPTP Metabolism and Toxicity. Annals of the New York Academy of Sciences, 1992, 648, 219-228.	1.8	19
107	MPTP-Induced ATP Loss in Mouse Brain. Annals of the New York Academy of Sciences, 1992, 648, 306-308.	1.8	9
108	Mitochondrial poisons cause depletion of reduced glutathione in isolated hepatocytes. Archives of Biochemistry and Biophysics, 1992, 295, 132-136.	1.4	72

#	Article	IF	CITATIONS
109	The relationships between aging, monoamine oxidase, striatal dopamine and the effects of MPTP in C57BL/6 mice: a critical reassessment. Brain Research, 1992, 572, 224-231.	1.1	89
110	Production and disposition of 1-methyl-4-phenylpyridinium in primary cultures of mouse astrocytes. Glia, 1992, 5, 48-55.	2.5	27
111	Glutathione in Parkinson's disease: A link between oxidative stress and mitochondrial damage?. Annals of Neurology, 1992, 32, S111-S115.	2.8	98
112	Blood lactate in Parkinson's disease. Annals of Neurology, 1991, 29, 342-343.	2.8	8
113	Effects of 1-Methyl-4-Phenyl- 1,2,3,6-Tetrahydropyridine and 1 -Methyl-4-Phenylpyridinium Ion on ATP Levels of Mouse Brain Synaptosomes. Journal of Neurochemistry, 1990, 54, 1295-1301.	2.1	84
114	The evolution of nigrostriatal neurochemical changes in the MPTP-treated squirrel monkey. Brain Research, 1990, 531, 242-252.	1.1	62
115	Relationships between the mitochondrial transmembrane potential, ATP concentration, and cytotoxicity in isolated rat hepatocytes. Archives of Biochemistry and Biophysics, 1990, 282, 358-362.	1.4	134
116	Commentary on â€~Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)'. Toxicology Letters, 1989, 48, 117-119.	0.4	1
117	The biodisposition of MPP+ in mouse brain. Neuroscience Letters, 1989, 101, 83-88.	1.0	30
118	Diethyldithiocarbamate and disulfiram inhibit MPP+ and dopamine uptake by striatal synaptosomes. European Journal of Pharmacology, 1989, 166, 23-29.	1.7	5
119	Relationships between intracellular vitamin E, lipid peroxidation, and chemical toxicity in hepatocytes. Toxicology and Applied Pharmacology, 1988, 93, 288-297.	1.3	66
120	Fructose prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced ATP depletion and toxicity in isolated hepatocytes. Biochemical and Biophysical Research Communications, 1988, 153, 734-740.	1.0	48
121	Role of Active Oxygen in Paraquat and 1-Methyl-4-phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Cytotoxicity. , 1988, 49, 795-801.		5
122	Comparative toxicity and antioxidant activity of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its monoamine oxidase B-generated metabolites in isolated hepatocytes and liver microsomes. Archives of Biochemistry and Biophysics, 1987, 255, 14-18.	1.4	11
123	Increased efflux rather than oxidation is the mechanism of glutathione depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Biochemical and Biophysical Research Communications, 1987, 148, 153-160.	1.0	32
124	VI. Studies on the mechanism of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine cytotoxicity in isolated hepatocytes. Life Sciences, 1987, 40, 741-748.	2.0	33
125	Role of 1-methyl-4-phenylpyridinium ion formation and accumulation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity to isolated hepatocytes. Chemico-Biological Interactions, 1987, 62, 105-116.	1.7	27
126	Comparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity. Biochemical and Biophysical Research Communications, 1986, 137, 303-309.	1.0	143

#	Article	IF	CITATIONS
127	1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) cause rapid ATP depletion in isolated hepatocytes. Biochemical and Biophysical Research Communications, 1986, 137, 310-315.	1.0	165
128	Decreased hepatic glutathione in chronic alcoholic patients. Journal of Hepatology, 1986, 3, 1-6.	1.8	87
129	tert–butylhydroperoxide—Induced toxicity in isolated hepatocytes: Contribution of thiol oxidation and lipid peroxidation. Journal of Biochemical Toxicology, 1986, 1, 13-22.	0.5	44
130	Induction of cell damage by menadione and benzo(a)-pyrene-3,6-quinone in cultures of adult rat hepatocytes and human fibroblasts. Toxicology Letters, 1985, 28, 37-47.	0.4	30
131	Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes. Archives of Biochemistry and Biophysics, 1984, 235, 334-342.	1.4	409
132	Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in in in intracellular Ca2+ homeostasis. Archives of Biochemistry and Biophysics, 1984, 235, 343-350.	1.4	372