## **Gabriel Popescu**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6365829/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Live-dead assay on unlabeled cells using phase imaging with computational specificity. Nature Communications, 2022, 13, 713.                               | 5.8  | 38        |
| 2  | Automatic Colorectal Cancer Screening Using Deep Learning in Spatial Light Interference Microscopy<br>Data. Cells, 2022, 11, 716.                          | 1.8  | 3         |
| 3  | Cell Cycle Stage Classification Using Phase Imaging with Computational Specificity. ACS Photonics, 2022, 9, 1264-1273.                                     | 3.2  | 23        |
| 4  | Circadian Volume Changes in Hippocampal Glia Studied by Label-Free Interferometric Imaging. Cells, 2022, 11, 2073.                                         | 1.8  | 2         |
| 5  | High-resolution impedance mapping using electrically activated quantitative phase imaging. Light:<br>Science and Applications, 2021, 10, 20.               | 7.7  | 10        |
| 6  | Label-free cell viability assay using phase imaging with computational specificity (PICS). , 2021, , .                                                     |      | 3         |
| 7  | Multiscale Assay of Unlabeled Neurite Dynamics Using Phase Imaging with Computational Specificity.<br>ACS Sensors, 2021, 6, 1864-1874.                     | 4.0  | 19        |
| 8  | Computational interference microscopy enabled by deep learning. APL Photonics, 2021, 6, 046103.                                                            | 3.0  | 11        |
| 9  | 10.1063/5.0041901.1.,2021,,.                                                                                                                               |      | 0         |
| 10 | Spatial light interference microscopy: principle and applications to biomedicine. Advances in Optics and Photonics, 2021, 13, 353.                         | 12.1 | 43        |
| 11 | Label-free screening of brain tissue myelin content using phase imaging with computational specificity (PICS). APL Photonics, 2021, 6, 076103.             | 3.0  | 7         |
| 12 | Monitoring reactivation of latent HIV by label-free gradient light interference microscopy. IScience, 2021, 24, 102940.                                    | 1.9  | 2         |
| 13 | Large-scale phase retrieval. Light: Science and Applications, 2021, 10, 175.                                                                               | 7.7  | 2         |
| 14 | Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity.<br>Light: Science and Applications, 2021, 10, 176.  | 7.7  | 37        |
| 15 | Diffraction as scattering under the Born approximation. Optics Express, 2021, 29, 39107-39114.                                                             | 1.7  | 0         |
| 16 | 10.1063/5.0065628.1., 2021,,.                                                                                                                              |      | 0         |
| 17 | Synthetic aperture interference light (SAIL) microscopy for high-throughput label-free imaging.<br>Applied Physics Letters, 2021, 119, 233701.             | 1.5  | 6         |
| 18 | Electrothermal soft manipulator enabling safe transport and handling of thin cell/tissue sheets and<br>bioelectronic devices. Science Advances, 2020, 6, . | 4.7  | 16        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Network science characteristics of brain-derived neuronal cultures deciphered from quantitative phase imaging data. Scientific Reports, 2020, 10, 15078.                                                                 | 1.6  | 26        |
| 20 | Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18302-18309. | 3.3  | 28        |
| 21 | Wolf phase tomography (WPT) of transparent structures using partially coherent illumination. Light:<br>Science and Applications, 2020, 9, 142.                                                                           | 7.7  | 30        |
| 22 | Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments. Nature Communications, 2020, 11, 6256.                                                                  | 5.8  | 109       |
| 23 | Label-free colorectal cancer screening using deep learning and spatial light interference microscopy<br>(SLIM). APL Photonics, 2020, 5, 040805.                                                                          | 3.0  | 38        |
| 24 | Harmonic optical tomography of nonlinear structures. Nature Photonics, 2020, 14, 564-569.                                                                                                                                | 15.6 | 39        |
| 25 | Editorial: Quantitative Phase Imaging and Its Applications to Biophysics, Biology, and Medicine.<br>Frontiers in Physics, 2020, 7, .                                                                                     | 1.0  | 5         |
| 26 | Morphometric analysis of sperm used for IVP by three different separation methods with spatial light interference microscopy. Systems Biology in Reproductive Medicine, 2020, 66, 26-36.                                 | 1.0  | 9         |
| 27 | Computational optical imaging goes viral. APL Photonics, 2020, 5, 030401.                                                                                                                                                | 3.0  | Ο         |
| 28 | High-throughput sperm assay using label-free microscopy: morphometric comparison between<br>different sperm structures of boar and stallion spermatozoa. Animal Reproduction Science, 2020, 219,<br>106509.              | 0.5  | 3         |
| 29 | Matrix Softness-Mediated 3D Zebrafish Hepatocyte Modulates Response to Endocrine Disrupting<br>Chemicals. Environmental Science & Technology, 2020, 54, 13797-13806.                                                     | 4.6  | 5         |
| 30 | Quantitative phase imaging of stromal prognostic markers in pancreatic ductal adenocarcinoma.<br>Biomedical Optics Express, 2020, 11, 1354.                                                                              | 1.5  | 22        |
| 31 | Real-time Jones phase microscopy for studying transparent and birefringent specimens. Optics Express, 2020, 28, 34190.                                                                                                   | 1.7  | 16        |
| 32 | Harmonically decoupled gradient light interference microscopy (HD-GLIM). Optics Letters, 2020, 45, 1487.                                                                                                                 | 1.7  | 11        |
| 33 | Quantifying myelin content in brain tissue using color Spatial Light Interference Microscopy (cSLIM).<br>PLoS ONE, 2020, 15, e0241084.                                                                                   | 1.1  | 8         |
| 34 | Phase imaging with computational specificity (PICS). , 2020, , .                                                                                                                                                         |      | 0         |
| 35 | Simultaneous cell traction and growth measurements using light. Journal of Biophotonics, 2019, 12, e201800182.                                                                                                           | 1.1  | 14        |
| 36 | Effects of substrate patterning on cellular spheroid growth and dynamics measured by gradient light interference microscopy (GLIM). Journal of Biophotonics, 2019, 12, e201900178.                                       | 1.1  | 9         |

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Epi-illumination gradient light interference microscopy for imaging opaque structures. Nature<br>Communications, 2019, 10, 4691.                                                        | 5.8  | 58        |
| 38 | Quantitative Histopathology of Stained Tissues using Color Spatial Light Interference Microscopy (cSLIM). Scientific Reports, 2019, 9, 14679.                                           | 1.6  | 30        |
| 39 | Gabor's holography at sea. Light: Science and Applications, 2019, 8, 19.                                                                                                                | 7.7  | 1         |
| 40 | Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells.<br>Scientific Reports, 2019, 9, 248.                                                | 1.6  | 44        |
| 41 | Imaging Collagen Properties in the Uterosacral Ligaments of Women With Pelvic Organ Prolapse<br>Using Spatial Light Interference Microscopy (SLIM). Frontiers in Physics, 2019, 7, .    | 1.0  | 15        |
| 42 | Graphene oxide substrates with N-cadherin stimulates neuronal growth and intracellular transport.<br>Acta Biomaterialia, 2019, 90, 412-423.                                             | 4.1  | 16        |
| 43 | Engineering geometrical 3-dimensional untethered in vitro neural tissue mimic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25932-25940. | 3.3  | 26        |
| 44 | Bond-selective transient phase imaging via sensing of the infrared photothermal effect. Light: Science and Applications, 2019, 8, 116.                                                  | 7.7  | 62        |
| 45 | Quantitative Phase Imaging (QPI) in Neuroscience. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-9.                                                                | 1.9  | 28        |
| 46 | SLIM microscopy allows for visualization of DNA-containing liposomes designed for sperm-mediated gene transfer in cattle. Molecular Biology Reports, 2019, 46, 695-703.                 | 1.0  | 11        |
| 47 | Optical excitation and detection of neuronal activity. Journal of Biophotonics, 2019, 12, e201800269.                                                                                   | 1.1  | 19        |
| 48 | Quantitative Phase Imaging: Principles and Applications. Biological and Medical Physics Series, 2019, ,<br>1-24.                                                                        | 0.3  | 9         |
| 49 | Tissue spatial correlation as cancer marker. Journal of Biomedical Optics, 2019, 24, 1.                                                                                                 | 1.4  | 14        |
| 50 | Cell-to-cell influence on growth in large populations. Biomedical Optics Express, 2019, 10, 4664.                                                                                       | 1.5  | 10        |
| 51 | Methods in quantitative phase imaging in life science. Methods, 2018, 136, 1-3.                                                                                                         | 1.9  | 8         |
| 52 | Label-Free Imaging of Thick Specimens Using Gradient Light Interference Microscopy (GLIM). , 2018, , .                                                                                  |      | 0         |
| 53 | Quantitative phase imaging in biomedicine. Nature Photonics, 2018, 12, 578-589.                                                                                                         | 15.6 | 1,028     |
| 54 | Optical properties of acute kidney injury measured by quantitative phase imaging. Biomedical Optics<br>Express, 2018, 9, 921.                                                           | 1.5  | 28        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Magnified Image Spatial Spectrum (MISS) microscopy for nanometer and millisecond scale label-free<br>imaging. Optics Express, 2018, 26, 5423.                                                                                                              | 1.7 | 22        |
| 56 | Endoscopic diffraction phase microscopy. Optics Letters, 2018, 43, 3373.                                                                                                                                                                                   | 1.7 | 23        |
| 57 | Real-time halo correction in phase contrast imaging. Biomedical Optics Express, 2018, 9, 623.                                                                                                                                                              | 1.5 | 44        |
| 58 | Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM).<br>Scientific Reports, 2018, 8, 6875.                                                                                                              | 1.6 | 39        |
| 59 | Effect of tissue staining in quantitative phase imaging. Journal of Biophotonics, 2018, 11, e201700402.                                                                                                                                                    | 1.1 | 5         |
| 60 | Disorder strength measured by quantitative phase imaging as intrinsic cancer marker in fixed tissue biopsies. PLoS ONE, 2018, 13, e0194320.                                                                                                                | 1.1 | 38        |
| 61 | Topography and refractometry of sperm cells using spatial light interference microscopy. Journal of<br>Biomedical Optics, 2018, 23, 1.                                                                                                                     | 1.4 | 11        |
| 62 | Geometric localization of thermal fluctuations in red blood cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2865-2870.                                                                                  | 3.3 | 26        |
| 63 | Cell density modulates intracellular mass transport in neural networks. Cytometry Part A: the<br>Journal of the International Society for Analytical Cytology, 2017, 91, 503-509.                                                                          | 1.1 | 19        |
| 64 | Quantitative phase imaging for labelâ€free cytometry. Cytometry Part A: the Journal of the International<br>Society for Analytical Cytology, 2017, 91, 407-411.                                                                                            | 1.1 | 14        |
| 65 | Halo-free Phase Contrast Microscopy. Scientific Reports, 2017, 7, 44034.                                                                                                                                                                                   | 1.6 | 34        |
| 66 | Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging. Journal of<br>Biomedical Optics, 2017, 22, 046004.                                                                                                               | 1.4 | 46        |
| 67 | Automatic Cleason grading of prostate cancer using quantitative phase imaging and machine learning.<br>Journal of Biomedical Optics, 2017, 22, 036015.                                                                                                     | 1.4 | 87        |
| 68 | Threeâ€dimensional intracellular transport in neuron bodies and neurites investigated by labelâ€free<br>dispersionâ€relation phase spectroscopy. Cytometry Part A: the Journal of the International Society for<br>Analytical Cytology, 2017, 91, 519-526. | 1.1 | 22        |
| 69 | Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy. ACS<br>Nano, 2017, 11, 647-655.                                                                                                                             | 7.3 | 42        |
| 70 | Three-dimensional mesostructures as high-temperature growth templates, electronic cellular<br>scaffolds, and self-propelled microrobots. Proceedings of the National Academy of Sciences of the<br>United States of America, 2017, 114, E9455-E9464.       | 3.3 | 129       |
| 71 | Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nature<br>Communications, 2017, 8, 210.                                                                                                                                      | 5.8 | 188       |
| 72 | 3D-Printed pHEMA Materials for Topographical and Biochemical Modulation of Dorsal Root Ganglion<br>Cell Response. ACS Applied Materials & Interfaces, 2017, 9, 30318-30328.                                                                                | 4.0 | 32        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter. Scientific Reports, 2017, 7, 14188.                                                                                         | 1.6 | 48        |
| 74 | Quantitative assessment of neural outgrowth using spatial light interference microscopy. Journal of Biomedical Optics, 2017, 22, 066015.                                                                                           | 1.4 | 14        |
| 75 | Label-free tissue scanner for colorectal cancer screening. Journal of Biomedical Optics, 2017, 22, 066016.                                                                                                                         | 1.4 | 49        |
| 76 | Quantitative phase imaging for medical diagnosis. Journal of Biophotonics, 2017, 10, 177-205.                                                                                                                                      | 1.1 | 127       |
| 77 | Physical significance of backscattering phase measurements. Optics Letters, 2017, 42, 4643.                                                                                                                                        | 1.7 | 12        |
| 78 | Measurement of multispectral scattering properties in mouse brain tissue. Biomedical Optics Express, 2017, 8, 1763.                                                                                                                | 1.5 | 7         |
| 79 | Refractive index variance of cells and tissues measured by quantitative phase imaging. Optics Express, 2017, 25, 1573.                                                                                                             | 1.7 | 45        |
| 80 | Dispersion relations of cytoskeleton dynamics. Cell Health and Cytoskeleton, 2016, , 1.                                                                                                                                            | 0.7 | 1         |
| 81 | Highâ€Resolution Projection Microstereolithography for Patterning of Neovasculature. Advanced<br>Healthcare Materials, 2016, 5, 610-619.                                                                                           | 3.9 | 117       |
| 82 | Label-free, multi-scale imaging of ex-vivo mouse brain using spatial light interference microscopy.<br>Scientific Reports, 2016, 6, 39667.                                                                                         | 1.6 | 15        |
| 83 | Bioprinting: Highâ€Resolution Projection Microstereolithography for Patterning of Neovasculature<br>(Adv. Healthcare Mater. 5/2016). Advanced Healthcare Materials, 2016, 5, 622-622.                                              | 3.9 | 6         |
| 84 | Cellular Microcultures: Programming Mechanical and Physicochemical Properties of 3D Hydrogel<br>Cellular Microcultures via Direct Ink Writing (Adv. Healthcare Mater. 9/2016). Advanced Healthcare<br>Materials, 2016, 5, 990-990. | 3.9 | 4         |
| 85 | Solving inverse scattering problems in biological samples by quantitative phase imaging. Laser and Photonics Reviews, 2016, 10, 13-39.                                                                                             | 4.4 | 62        |
| 86 | Quantitative phase imaging of weakly scattering objects using partially coherent illumination. Optics<br>Express, 2016, 24, 11683.                                                                                                 | 1.7 | 16        |
| 87 | Phase correlation imaging of unlabeled cell dynamics. Scientific Reports, 2016, 6, 32702.                                                                                                                                          | 1.6 | 36        |
| 88 | Guest Editorial Introduction to the Issue on Nanobiophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 3-5.                                                                                              | 1.9 | 0         |
| 89 | Prediction of prostate cancer recurrence using quantitative phase imaging: Validation on a general population. Scientific Reports, 2016, 6, 33818.                                                                                 | 1.6 | 33        |
| 90 | Programming Mechanical and Physicochemical Properties of 3D Hydrogel Cellular Microcultures via<br>Direct Ink Writing. Advanced Healthcare Materials, 2016, 5, 1025-1039.                                                          | 3.9 | 32        |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Standardizing the resolution claims for coherent microscopy. Nature Photonics, 2016, 10, 68-71.                                                                                                                    | 15.6 | 94        |
| 92  | White-light diffraction phase microscopy at doubled space-bandwidth product. Optics Express, 2016, 24, 29033.                                                                                                      | 1.7  | 34        |
| 93  | Prediction of Prostate Cancer Recurrence Using Quantitative Phase Imaging. Scientific Reports, 2015, 5, 9976.                                                                                                      | 1.6  | 79        |
| 94  | Measuring the Nonuniform Evaporation Dynamics of Sprayed Sessile Microdroplets with Quantitative Phase Imaging. Langmuir, 2015, 31, 11020-11032.                                                                   | 1.6  | 20        |
| 95  | Quantitative phase imaging of arthropods. Journal of Biomedical Optics, 2015, 20, 111212.                                                                                                                          | 1.4  | 1         |
| 96  | Active intracellular transport in metastatic cells studied by spatial light interference microscopy.<br>Journal of Biomedical Optics, 2015, 20, 111209.                                                            | 1.4  | 15        |
| 97  | Breast cancer diagnosis using spatial light interference microscopy. Journal of Biomedical Optics, 2015, 20, 111210.                                                                                               | 1.4  | 48        |
| 98  | Highly Sensitive Quantitative Imaging for Monitoring Single Cancer Cell Growth Kinetics and Drug<br>Response. PLoS ONE, 2014, 9, e89000.                                                                           | 1.1  | 52        |
| 99  | Spatiotemporal Characterization of a Fibrin Clot Using Quantitative Phase Imaging. PLoS ONE, 2014, 9, e111381.                                                                                                     | 1.1  | 12        |
| 100 | Breakthroughs in Photonics 2013: Quantitative Phase Imaging: Metrology Meets Biology. IEEE<br>Photonics Journal, 2014, 6, 1-9.                                                                                     | 1.0  | 21        |
| 101 | Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited]. Applied Optics, 2014, 53, G33.                                                                                         | 0.9  | 46        |
| 102 | In situ measurements of the axial expansion of palladium microdisks during hydrogen exposure using diffraction phase microscopy. Optical Materials Express, 2014, 4, 2559.                                         | 1.6  | 9         |
| 103 | Effects of spatial coherence in diffraction phase microscopy. Optics Express, 2014, 22, 5133.                                                                                                                      | 1.7  | 65        |
| 104 | High Resolution Phase-Sensitive Magnetomotive Optical Coherence Microscopy for Tracking Magnetic<br>Microbeads and Cellular Mechanics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20,<br>25-31. | 1.9  | 19        |
| 105 | Nanoscale topography and spatial light modulator characterization using wide-field quantitative phase imaging. Optics Express, 2014, 22, 3432.                                                                     | 1.7  | 40        |
| 106 | Label-Free Characterization of Emerging Human Neuronal Networks. Scientific Reports, 2014, 4, 4434.                                                                                                                | 1.6  | 58        |
| 107 | Characterizing microdroplet evaporation using diffraction phase microscopy. , 2014, , .                                                                                                                            |      | 0         |
| 108 | New technologies for measuring single cell mass. Lab on A Chip, 2014, 14, 646-652.                                                                                                                                 | 3.1  | 62        |

| #   | Article                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | White-light diffraction tomography of unlabelled live cells. Nature Photonics, 2014, 8, 256-263.                                              | 15.6 | 385       |
| 110 | Diffraction phase microscopy: principles and applications in materials and life sciences. Advances in Optics and Photonics, 2014, 6, 57.      | 12.1 | 317       |
| 111 | Inverse scattering solutions using low-coherence light. Optics Letters, 2014, 39, 4494.                                                       | 1.7  | 14        |
| 112 | Optical Assay of Erythrocyte Function in Banked Blood. Scientific Reports, 2014, 4, 6211.                                                     | 1.6  | 39        |
| 113 | Observing hydrogen induced deformations in palladium thin-films. , 2013, , .                                                                  |      | 1         |
| 114 | Fourier Transform Light Scattering of Tissues. , 2013, , 259-290.                                                                             |      | 2         |
| 115 | Detecting 20 nm Wide Defects in Large Area Nanopatterns Using Optical Interferometric Microscopy.<br>Nano Letters, 2013, 13, 3716-3721.       | 4.5  | 85        |
| 116 | Fast phase reconstruction in white light diffraction phase microscopy. Applied Optics, 2013, 52, A97.                                         | 0.9  | 73        |
| 117 | Fourier phase microscopy with white light. Biomedical Optics Express, 2013, 4, 1434.                                                          | 1.5  | 73        |
| 118 | Spatial Light Interference Microscopy (SLIM) using twisted-nematic liquid-crystal modulation.<br>Biomedical Optics Express, 2013, 4, 1571.    | 1.5  | 23        |
| 119 | Deterministic signal associated with a random field. Optics Express, 2013, 21, 20806.                                                         | 1.7  | 10        |
| 120 | Real Time Blood Testing Using Quantitative Phase Imaging. PLoS ONE, 2013, 8, e55676.                                                          | 1.1  | 81        |
| 121 | Cardiomyocyte Imaging Using Real-Time Spatial Light Interference Microscopy (SLIM). PLoS ONE, 2013, 8, e56930.                                | 1.1  | 23        |
| 122 | Gradient field microscopy of unstained specimens. Optics Express, 2012, 20, 6737.                                                             | 1.7  | 26        |
| 123 | Spectroscopic diffraction phase microscopy. Optics Letters, 2012, 37, 3438.                                                                   | 1.7  | 64        |
| 124 | Dispersion-Relation Fluorescence Spectroscopy. Physical Review Letters, 2012, 109, 188104.                                                    | 2.9  | 9         |
| 125 | Diffraction phase microscopy with white light. Optics Letters, 2012, 37, 1094.                                                                | 1.7  | 282       |
| 126 | Optically monitoring and controlling nanoscale topography during semiconductor etching. Light:<br>Science and Applications, 2012, 1, e30-e30. | 7.7  | 108       |

| #   | Article                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Diffraction phase microscopy for wafer inspection. , 2012, , .                                                                                               |     | 1         |
| 128 | Quantitative Phase Imaging. Progress in Optics, 2012, 57, 133-217.                                                                                           | 0.4 | 145       |
| 129 | Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light<br>Interference Tomography. PLoS ONE, 2012, 7, e39816.          | 1.1 | 32        |
| 130 | Optical measurement of cycle-dependent cell growth. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13124-13129. | 3.3 | 387       |
| 131 | Effective Temperature of Red-Blood-Cell Membrane Fluctuations. Physical Review Letters, 2011, 106, 238103.                                                   | 2.9 | 125       |
| 132 | Measurement of the nonlinear elasticity of red blood cell membranes. Physical Review E, 2011, 83, 051925.                                                    | 0.8 | 74        |
| 133 | Optical Sensing of Red Blood Cell Dynamics. , 2011, , 279-309.                                                                                               |     | 7         |
| 134 | Effective 3D viscoelasticity of red blood cells measured by diffraction phase microscopy. Biomedical Optics Express, 2011, 2, 485.                           | 1.5 | 25        |
| 135 | Cell imaging beyond the diffraction limit using sparse deconvolution spatial light interference microscopy. Biomedical Optics Express, 2011, 2, 1815.        | 1.5 | 22        |
| 136 | Born approximation model for light scattering by red blood cells. Biomedical Optics Express, 2011, 2, 2784.                                                  | 1.5 | 34        |
| 137 | Simultaneous optical measurements of cell motility and growth. Biomedical Optics Express, 2011, 2, 2815.                                                     | 1.5 | 42        |
| 138 | Blood testing at the single cell level using quantitative phase and amplitude microscopy. Biomedical Optics Express, 2011, 2, 3259.                          | 1.5 | 78        |
| 139 | Spatial light interference microscopy (SLIM). Optics Express, 2011, 19, 1016.                                                                                | 1.7 | 608       |
| 140 | Spatial light interference tomography (SLIT). Optics Express, 2011, 19, 19907.                                                                               | 1.7 | 71        |
| 141 | Dispersion-relation phase spectroscopy of intracellular transport. Optics Express, 2011, 19, 20571.                                                          | 1.7 | 80        |
| 142 | Scattering-phase theorem. Optics Letters, 2011, 36, 1215.                                                                                                    | 1.7 | 64        |
| 143 | Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices. Optics<br>Letters, 2011, 36, 2281.                            | 1.7 | 46        |
| 144 | Correlation-induced spectral changes in tissues. Optics Letters, 2011, 36, 4209.                                                                             | 1.7 | 22        |

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Laplace field microscopy for label-free imaging of dynamic biological structures. Optics Letters, 2011, 36, 4704.                                                            | 1.7 | 19        |
| 146 | One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy. Journal of Physics Condensed Matter, 2011, 23, 374107.                | 0.7 | 21        |
| 147 | Spatial light interference microscopy (SLIM). , 2011, , .                                                                                                                    |     | 2         |
| 148 | Light scattering of human red blood cells during metabolic remodeling of the membrane. Journal of<br>Biomedical Optics, 2011, 16, 011013.                                    | 1.4 | 44        |
| 149 | Label-free intracellular transport measured by spatial light interference microscopy. Journal of<br>Biomedical Optics, 2011, 16, 1.                                          | 1.4 | 40        |
| 150 | Tissue refractive index as marker of disease. Journal of Biomedical Optics, 2011, 16, 1.                                                                                     | 1.4 | 217       |
| 151 | Fourier Transform Light Scattering (FTLS) of Cells and Tissues. Journal of Computational and Theoretical Nanoscience, 2010, 7, 2501-2511.                                    | 0.4 | 22        |
| 152 | Fourier Transform Light Scattering of Biological Structure and Dynamics. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 909-918.                          | 1.9 | 25        |
| 153 | Blood screening using diffraction phase cytometry. Journal of Biomedical Optics, 2010, 15, 027016.                                                                           | 1.4 | 39        |
| 154 | Quantitative phase imaging with broadband fields. Applied Physics Letters, 2010, 96, 051117.                                                                                 | 1.5 | 35        |
| 155 | Measurement of red blood cell mechanics during morphological changes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6731-6736. | 3.3 | 381       |
| 156 | Measurement of adherent cell mass and growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20691-20696.                       | 3.3 | 186       |
| 157 | Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells. Journal of<br>Biomedical Optics, 2010, 15, 020506.                              | 1.4 | 85        |
| 158 | Actin-driven cell dynamics probed by Fourier transform light scattering. Biomedical Optics Express, 2010, 1, 260.                                                            | 1.5 | 26        |
| 159 | Topography and refractometry of nanostructures using spatial light interference microscopy. Optics<br>Letters, 2010, 35, 208.                                                | 1.7 | 55        |
| 160 | Diffraction phase contrast microscopy. Optics Express, 2010, 18, 1569.                                                                                                       | 1.7 | 96        |
| 161 | Metabolic remodeling of the human red blood cell membrane. Proceedings of the National Academy of<br>Sciences of the United States of America, 2010, 107, 1289-1294.         | 3.3 | 358       |
| 162 | Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy.<br>Journal of Physical Chemistry A, 2009, 113, 13327-13330.                      | 1.1 | 82        |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Optical properties of tissues quantified by Fourier-transform light scattering. Optics Letters, 2009, 34, 1372.                                                                                                             | 1.7 | 68        |
| 164 | Diffraction Phase Cytometry: blood on a CD-ROM. Optics Express, 2009, 17, 2579.                                                                                                                                             | 1.7 | 50        |
| 165 | Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures. Physical Review Letters, 2008, 101, 238102.                                                                                                     | 2.9 | 137       |
| 166 | Jones phase microscopy of transparent and anisotropic samples. Optics Letters, 2008, 33, 1270.                                                                                                                              | 1.7 | 77        |
| 167 | Confocal diffraction phase microscopy of live cells. Optics Letters, 2008, 33, 2074.                                                                                                                                        | 1.7 | 26        |
| 168 | Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion. Optics Express, 2008, 16, 16240.                                                                                      | 1.7 | 57        |
| 169 | Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells, Molecules, and Diseases, 2008, 41, 10-16.                                                                                                    | 0.6 | 200       |
| 170 | Optical imaging of cell mass and growth dynamics. American Journal of Physiology - Cell Physiology, 2008, 295, C538-C544.                                                                                                   | 2.1 | 436       |
| 171 | Refractive index maps and membrane dynamics of human red blood cells parasitized by <i>Plasmodium falciparum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13730-13735. | 3.3 | 619       |
| 172 | Chapter 5 Quantitative Phase Imaging of Nanoscale Cell Structure and Dynamics. Methods in Cell<br>Biology, 2008, 90, 87-115.                                                                                                | 0.5 | 91        |
| 173 | Coherence properties of red blood cell membrane motions. Physical Review E, 2007, 76, 031902.                                                                                                                               | 0.8 | 62        |
| 174 | Fresnel particle tracing in three dimensions using diffraction phase microscopy. Optics Letters, 2007, 32, 811.                                                                                                             | 1.7 | 68        |
| 175 | Tissue refractometry using Hilbert phase microscopy. Optics Letters, 2007, 32, 3522.                                                                                                                                        | 1.7 | 67        |
| 176 | Microrheology of red blood cell membranes using dynamic scattering microscopy. Optics Express, 2007, 15, 17001.                                                                                                             | 1.7 | 60        |
| 177 | Quantitative phase imaging of live cells using fast Fourier phase microscopy. Applied Optics, 2007, 46, 1836.                                                                                                               | 2.1 | 104       |
| 178 | Optical Measurement of Cell Membrane Tension. Physical Review Letters, 2006, 97, 218101.                                                                                                                                    | 2.9 | 194       |
| 179 | Tissue Self-Affinity and Polarized Light Scattering in the Born Approximation: A New Model for Precancer Detection. Physical Review Letters, 2006, 97, 138102.                                                              | 2.9 | 109       |
| 180 | Diffraction phase microscopy for quantifying cell structure and dynamics. Optics Letters, 2006, 31, 775.                                                                                                                    | 1.7 | 762       |

| #   | Article                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Live cell refractometry using microfluidic devices. Optics Letters, 2006, 31, 2759.                                                  | 1.7 | 154       |
| 182 | Diffraction phase and fluorescence microscopy. Optics Express, 2006, 14, 8263.                                                       | 1.7 | 246       |
| 183 | Observation of dynamic subdomains in red blood cells. Journal of Biomedical Optics, 2006, 11, 040503.                                | 1.4 | 71        |
| 184 | Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. Journal of Biomedical Optics, 2005, 10, 060503.           | 1.4 | 179       |
| 185 | Hilbert phase microscopy for investigating fast dynamics in transparent systems. Optics Letters, 2005, 30, 1165.                     | 1.7 | 581       |
| 186 | Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry.<br>Optics Letters, 2004, 29, 2399. | 1.7 | 101       |
| 187 | Fourier phase microscopy for investigation of biological structures and dynamics. Optics Letters, 2004, 29, 2503.                    | 1.7 | 442       |
| 188 | SEEING SMALL BIOLOGICAL STRUCTURES WITH LIGHT. , 2004, , .                                                                           |     | 0         |