Guifeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/636570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Molecular Biology, 2013, 82, 303-320.	3.9	82
2	Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development. Journal of Experimental Botany, 2019, 70, 3125-3138.	4.8	75
3	The salt-responsive transcriptome of Populus simonii×Populus nigra via DGE. Gene, 2012, 504, 203-212.	2.2	62
4	Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. Plant Science, 2020, 292, 110375.	3.6	62
5	Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses. Tree Physiology, 2017, 37, 827-844.	3.1	54
6	Cloning of Ten Peroxidase (POD) Genes from Tamarix Hispida and Characterization of their Responses to Abiotic Stress. Plant Molecular Biology Reporter, 2010, 28, 77-89.	1.8	51
7	The Conserved Endoribonuclease YbeY Is Required for Chloroplast Ribosomal RNA Processing in Arabidopsis. Plant Physiology, 2015, 168, 205-221.	4.8	49
8	Analysis of Gene Expression Profile of Limonium bicolor under NaHCO3 Stress Using cDNA Microarray. Plant Molecular Biology Reporter, 2008, 26, 241-254.	1.8	46
9	Ovexpression of a Vacuolar H+-ATPase c Subunit Gene Mediates Physiological Changes Leading to Enhanced Salt Tolerance in Transgenic Tobacco. Plant Molecular Biology Reporter, 2011, 29, 424-430.	1.8	38
10	The rooting of poplar cuttings: a review. New Forests, 2014, 45, 21-34.	1.7	31
11	BpAP1 directly regulates BpDEF to promote male inflorescence formation in Betula platyphylla × B. pendula. Tree Physiology, 2019, 39, 1046-1060.	3.1	29
12	Variance and stability analyses of growth characters in half-sib Betula platyphylla families at three different sites in China. Euphytica, 2016, 208, 173-186.	1.2	28
13	Negative feedback loop between BpAP1 and BpPI/BpDEF heterodimer in Betula platyphylla × B. pendula. Plant Science, 2019, 289, 110280.	3.6	28
14	Functional characterization of <i><scp>CCR</scp></i> in birch (<i>Betula platyphylla</i> × <i>Betula) Tj ETQ 283-296.</i>	q0 0 0 rgB1 5.2	[/Overlock 10 27
15	BpGH3.5, an early auxin-response gene, regulates root elongation in Betula platyphyllaÂ×ÂBetula pendula. Plant Cell, Tissue and Organ Culture, 2015, 120, 239-250.	2.3	26
16	Comparative Analysis of Growth and Photosynthetic Characteristics of (Populus simonii × P. nigra) × (P. nigra × P. simonii) Hybrid Clones of Different Ploidides. PLoS ONE, 2015, 10, e0119259.	2.5	23
17	Analysis of genetic effects on a complete diallel cross test of Betula platyphylla. Euphytica, 2014, 200, 221-229.	1.2	22
18	Phylogenetic and stress-responsive expression analysis of 20 WRKY genes in Populus simonii×Populus nigra. Gene, 2015, 565, 130-139.	2.2	22

GUIFENG LIU

#	Article	IF	CITATIONS
19	Comprehensive characterization of T-DNA integration induced chromosomal rearrangement in a birch T-DNA mutant. BMC Genomics, 2019, 20, 311.	2.8	22
20	A novel synthetic-genetic-array–based yeast one-hybrid system for high discovery rate and short processing time. Genome Research, 2019, 29, 1343-1351.	5.5	20
21	Genetic Linkage Maps of Betula platyphylla Suk Based on ISSR and AFLP Markers. Plant Molecular Biology Reporter, 2010, 28, 169-175.	1.8	19
22	Influence of Nitrogen, Phosphorus, and Potassium Fertilization on Flowering and Expression of Flowering-Associated Genes in White Birch (Betula platyphylla Suk.). Plant Molecular Biology Reporter, 2011, 29, 794-801.	1.8	18
23	Variation and genetic stability analyses of transgenic TaLEA poplar clones from four different sites in China. Euphytica, 2015, 206, 331-342.	1.2	17
24	Genome-wide transcriptome profiling reveals the mechanism of the effects of uniconazole on root development in Glycine Max. Journal of Plant Biology, 2017, 60, 387-403.	2.1	16
25	Characterization and Identification of a woody lesion mimic mutant lmd, showing defence response and resistance to Alternaria alternate in birch. Scientific Reports, 2017, 7, 11308.	3.3	15
26	Study on the physiological indices of Pinus sibirica and Pinus koraiensis seedlings under cold stress. Journal of Forestry Research, 2019, 30, 1255-1265.	3.6	15
27	Physiological and Transcriptome Analysis of a Yellow-Green Leaf Mutant in Birch (Betula platyphylla ×) Tj ETQq1	1_0,78431 2.1	l4rgBT /Ov
28	Functional Study of BpPP2C1 Revealed Its Role in Salt Stress in Betula platyphylla. Frontiers in Plant Science, 2020, 11, 617635.	3.6	14
29	Time-Course Analysis of Levels of Indole-3-Acetic Acid and Expression of Auxin-Responsive GH3 Genes in Betula platyphylla. Plant Molecular Biology Reporter, 2011, 29, 898-905.	1.8	13
30	BpMADS12 gene role in lignin biosynthesis of Betula platyphylla Suk by transcriptome analysis. Journal of Forestry Research, 2016, 27, 1111-1120.	3.6	13
31	Building an mRNA transcriptome from the shoots of Betula platyphylla by using Solexa technology. Tree Genetics and Genomes, 2012, 8, 1031-1040.	1.6	10
32	Overexpression of BpCUC2 Influences Leaf Shape and Internode Development in Betula pendula. International Journal of Molecular Sciences, 2019, 20, 4722.	4.1	10
33	Genetic variation and selection of introduced provenances of Siberian Pine (Pinus sibirica) in frigid regions of the Greater Xing'an Range, Northeast China. Journal of Forestry Research, 2014, 25, 549-556.	3.6	9
34	Analysis of three types of triterpenoids in tetraploid white birches (Betula platyphylla Suk.) and selection of plus trees. Journal of Forestry Research, 2015, 26, 623-633.	3.6	9
35	Analysis of the promoter features of BpCUC2 in Betula platyphylla × Betula pendula. Plant Cell, Tissue and Organ Culture, 2018, 132, 191-199.	2.3	9
36	A R2R3-MYB Transcription Factor Gene, BpMYB123, Regulates BpLEA14 to Improve Drought Tolerance in Betula platyphylla. Frontiers in Plant Science, 2021, 12, 791390.	3.6	8

GUIFENG LIU

#	Article	IF	CITATIONS
37	Expression of BpPIN is associated with IAA levels and the formation of lobed leaves in Betula pendula â€~Dalecartica'. Journal of Forestry Research, 2020, 31, 87-97.	3.6	7
38	Somatic embryogenesis and plant regeneration in Betula platyphalla. Journal of Forestry Research, 2021, 32, 937-944.	3.6	7
39	BpMADS12 mediates endogenous hormone signaling: effect on plant development Betula platyphylla. Plant Cell, Tissue and Organ Culture, 2016, 124, 169-180.	2.3	6
40	Evaluation of Betula platyphylla Families Based on Growth and Wood Property Traits. Forest Science, 0, , .	1.0	6
41	Characterization and T-DNA insertion sites identification of a multiple-branches mutant br in Betula platyphylla × Betula pendula. BMC Plant Biology, 2019, 19, 491.	3.6	5
42	Transcriptome sequencing to reveal the genetic regulation of leaf margin variation at early stage in birch. Tree Genetics and Genomes, 2019, 15, 1.	1.6	5
43	Expression of BpIAA10 from Betula platyphylla (birch) is differentially regulated by different hormones and light intensities. Plant Cell, Tissue and Organ Culture, 2018, 132, 371-381.	2.3	4
44	Expression profiling of the BpIAA gene family and the determination of IAA levels in Betula platyphylla tetraploids. Journal of Forestry Research, 2019, 30, 855-867.	3.6	4
45	Transcriptome analysis provides new insights into leaf shape variation in birch. Trees - Structure and Function, 2019, 33, 1265-1281.	1.9	4
46	Global Analysis of the WOX Transcription Factor Gene Family in Populus × xiaohei T. S. Hwang et Liang Reveals Their Stressâ^'Responsive Patterns. Forests, 2022, 13, 122.	2.1	4
47	Progeny test of tetraploid Betula platyphylla and preliminary selection of hybrid parents. Journal of Forestry Research, 2016, 27, 665-674.	3.6	3
48	Transcriptome Analysis of a Multiple-Branches Mutant Terminal Buds in Betula platyphylla × B. pendula. Forests, 2019, 10, 374.	2.1	3
49	Investigation of temporal variations in endogenous gibberellin A3 and A4 in the leaves of birch (Betula) Tj ETQq1	1 0.7843 1.9	314 rgBT /Ove
50	Inhibition of BpEIN3 causes plaques in leaves of Betula platyphylla × B. pendula. Trees - Structure and Function, 2020, 34, 483-495.	1.9	2
51	Selection and optimum fertilization of Betula platyphylla hybrid clones for growth. Trees - Structure and Function, 2021, 35, 469-478.	1.9	1
52	Selection of elite lines of BpGH3.5-transgenic Betula platyphylla using growth adaptability analysis. Journal of Forestry Research, 0, , 1.	3.6	1
53	Effect of mouse calcineurin on induction and growth of rice callus transformed by the calcineurin gene. Plant Cell, Tissue and Organ Culture, 2006, 86, 1-6.	2.3	0