Ovidiu Paun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6365184/publications.pdf

Version: 2024-02-01

126708 128067 3,977 71 33 60 h-index citations g-index papers 82 82 82 4245 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Ecological plant epigenetics: Evidence from model and nonâ€model species, and the way forward. Ecology Letters, 2017, 20, 1576-1590.	3.0	279
2	Out of the Alps: colonization of Northern Europe by East Alpine populations of the Glacier Buttercup Ranunculus glacialis L. (Ranunculaceae). Molecular Ecology, 2003, 12, 3373-3381.	2.0	192
3	Stable Epigenetic Effects Impact Adaptation in Allopolyploid Orchids (Dactylorhiza: Orchidaceae). Molecular Biology and Evolution, 2010, 27, 2465-2473.	3.5	185
4	Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Molecular Ecology, 2007, 16, 2542-2559.	2.0	183
5	History or ecology? Substrate type as a major driver of patial genetic structure in Alpine plants. Ecology Letters, 2009, 12, 632-640.	3.0	167
6	Hybrid speciation in angiosperms: parental divergence drives ploidy. New Phytologist, 2009, 182, 507-518.	3.5	155
7	The role of hybridization, polyploidization and glaciation in the origin and evolution of the apomictic Ranunculus cassubicus complex. New Phytologist, 2006, 171, 223-236.	3.5	135
8	Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecology Letters, 2012, 15, 1439-1448.	3.0	135
9	Phylogenetic relationships and evolutionary traits in Ranunculus s.l. (Ranunculaceae) inferred from ITS sequence analysis. Molecular Phylogenetics and Evolution, 2005, 36, 305-327.	1.2	126
10	Phylogenetic relationships within Orchidaceae based on a low-copy nuclear coding gene, Xdh: Congruence with organellar and nuclear ribosomal DNA results. Molecular Phylogenetics and Evolution, 2010, 56, 784-795.	1.2	119
11	Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. New Phytologist, 2014, 204, 1000-1012.	3.5	99
12	Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole <i>Ranunculus alpestris </i> group (Ranunculaceae) in the European Alps and the Carpathians. Molecular Ecology, 2008, 17, 4263-4275.	2.0	98
13	Processes Driving the Adaptive Radiation of a Tropical Tree (<i>Diospyros</i> , Ebenaceae) in New Caledonia, a Biodiversity Hotspot. Systematic Biology, 2016, 65, 212-227.	2.7	98
14	Patterns, sources and ecological implications of clonal diversity in apomictic Ranunculus carpaticola (Ranunculus auricomus complex, Ranunculaceae). Molecular Ecology, 2006, 15, 897-910.	2.0	97
15	Bs <scp>RAD</scp> seq: screening <scp>DNA</scp> methylation in natural populations of nonâ€model species. Molecular Ecology, 2016, 25, 1697-1713.	2.0	96
16	Phylogenetic relationships and biogeography of <i>Ranunculus</i> and allied genera (Ranunculaceae) in the Mediterranean region and in the European Alpine System. Taxon, 2005, 54, 911-932.	0.4	92
17	Phylogenomic Relationships of Diploids and the Origins of Allotetraploids in Dactylorhiza (Orchidaceae). Systematic Biology, 2020, 69, 91-109.	2.7	89
18	Amplified Fragment Length Polymorphism: An Invaluable Fingerprinting Technique for Genomic, Transcriptomic, and Epigenetic Studies. Methods in Molecular Biology, 2012, 862, 75-87.	0.4	73

#	Article	IF	Citations
19	A new individual-based spatial approach for identifying genetic discontinuities in natural populations. Molecular Ecology, 2007, 16, 2031-2043.	2.0	72
20	Reticulate evolution and taxonomic concepts in the <i>Ranunculus auricomus</i> complex (Ranunculaceae): insights from analysis of morphological, karyological and molecular data. Taxon, 2009, 58, 1194-1216.	0.4	67
21	Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (<i>Cedrus atlantica</i> ; Pinaceae) determined with cpSSR markers. American Journal of Botany, 2006, 93, 1274-1280.	0.8	64
22	Effects of species traits on the genetic diversity of highâ€mountain plants: a multiâ€species study across the Alps and the Carpathians. Global Ecology and Biogeography, 2009, 18, 78-87.	2.7	62
23	Altered gene expression and ecological divergence in sibling allopolyploids of Dactylorhiza (Orchidaceae). BMC Evolutionary Biology, 2011, 11, 113.	3.2	61
24	Opportunities and limitations of reduced representation bisulfite sequencing in plant ecological epigenomics. New Phytologist, 2019, 221, 738-742.	3.5	59
25	Genomic analyses suggest parallel ecological divergence in Heliosperma pusillum (Caryophyllaceae). New Phytologist, 2017, 216, 267-278.	3.5	58
26	Genetic diversity at chloroplast microsatellites (cpSSRs) and geographic structure in endangered West Mediterranean firs (<i>Abies</i> pinaceae). Taxon, 2007, 56, 409-416.	0.4	57
27	Environmental Heterogeneity and Phenotypic Divergence: Can Heritable Epigenetic Variation Aid Speciation?. Genetics Research International, 2012, 2012, 1-9.	2.0	56
28	Genetic and epigenetic alterations after hybridization and genome doubling. Taxon, 2007, 56, 649-656.	0.4	52
29	Reticulate evolution and taxonomic concepts in the Ranunculus auricomus complex (Ranunculaceae): insights from analysis of morphological, karyological and molecular data. Taxon, 2009, 58, 1194-1215.	0.4	52
30	Integrating restriction site-associated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids. Annals of Botany, 2018, 121, 85-105.	1.4	48
31	Uncovering the contribution of epigenetics to plant phenotypic variation in Mediterranean ecosystems. Plant Biology, 2018, 20, 38-49.	1.8	40
32	ITS Polymorphisms Shed Light on Hybrid Evolution in Apomictic Plants: A Case Study on the Ranunculus auricomus Complex. PLoS ONE, 2014, 9, e103003.	1.1	38
33	A nuclear Xdh phylogenetic analysis of yams (Dioscorea: Dioscoreaceae) congruent with plastid trees reveals a new Neotropical lineage. Botanical Journal of the Linnean Society, 2018, 187, 232-246.	0.8	38
34	Genetic, cytological and morphological differentiation within the Balkan-Carpathian <i>Sesleria rigida</i> sensu Fl. Eur. (Poaceae): A taxonomically intricate tetraploid-octoploid complex. Taxon, 2013, 62, 458-472.	0.4	36
35	Novel computed tomography-based tools reliably quantify plant reproductive investment. Journal of Experimental Botany, 2018, 69, 525-535.	2.4	36
36	Molecular phylogenomics of the tribe Shoreeae (Dipterocarpaceae) using whole plastid genomes. Annals of Botany, 2019, 123, 857-865.	1.4	35

#	Article	IF	Citations
37	Sequencing of whole plastid genomes and nuclear ribosomal DNA of <i>Diospyros </i> species (Ebenaceae) endemic to New Caledonia: many species, little divergence. Annals of Botany, 2016, 117, 1175-1185.	1.4	34
38	Long-term isolation of European steppe outposts boosts the biome's conservation value. Nature Communications, 2020, 11, 1968.	5.8	34
39	Genetic and epigenetic alterations after hybridization and genome doubling. Taxon, 2007, 56, 649-56.	0.4	31
40	RADseq provides evidence for parallel ecotypic divergence in the autotetraploid Cochlearia officinalis in Northern Norway. Scientific Reports, 2017, 7, 5573.	1.6	30
41	Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex. Heredity, 2016, 116, 351-361.	1.2	29
42	Phylogenomics resolves evolutionary relationships and provides insights into floral evolution in the tribe Shoreeae (Dipterocarpaceae). Molecular Phylogenetics and Evolution, 2018, 127, 1-13.	1.2	29
43	Integrating phylogenomics, phylogenetics, morphometrics, relative genome size and ecological niche modelling disentangles the diversification of Eurasian Euphorbia seguieriana s. l. (Euphorbiaceae). Molecular Phylogenetics and Evolution, 2019, 134, 238-252.	1.2	29
44	Evolution of Hypervariable Microsatellites in Apomictic Polyploid Lineages of Ranunculus carpaticola: Directional Bias at Dinucleotide Loci. Genetics, 2006, 174, 387-398.	1.2	27
45	Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Molecular Phylogenetics and Evolution, 2019, 139, 106572.	1.2	27
46	Pleistocene distribution range shifts were accompanied by breeding system divergence within Hornungia alpina (Brassicaceae) in the Alps. Molecular Phylogenetics and Evolution, 2010, 54, 571-582.	1.2	26
47	Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (<i>Dactylorhiza</i>) with distinct ecological optima. Molecular Ecology, 2017, 26, 3649-3662.	2.0	25
48	Iterative allogamy–autogamy transitions drive actual and incipient speciation during the ongoing evolutionary radiation within the orchid genus Epipactis (Orchidaceae). Annals of Botany, 2019, 124, 481-497.	1.4	24
49	Restriction-site associated DNA sequencing supports a sister group relationship of Nigritella and Gymnadenia (Orchidaceae). Molecular Phylogenetics and Evolution, 2019, 136, 21-28.	1.2	24
50	Early diversification and permeable species boundaries in the Mediterranean firs. Annals of Botany, 2020, 125, 495-507.	1.4	24
51	Taxonâ€specific or universal? Using target capture to study the evolutionary history of rapid radiations. Molecular Ecology Resources, 2022, 22, 927-945.	2.2	24
52	Current research frontiers in plant epigenetics: an introduction to a Virtual Issue. New Phytologist, 2020, 226, 285-288.	3.5	21
53	Hybridization and speciation in angiosperms: a role for pollinator shifts?. BMC Biology, 2010, 8, 45.	1.7	20
54	Analyses of amplified fragment length polymorphisms (AFLP) indicate rapid radiation of Diospyros species (Ebenaceae) endemic to New Caledonia. BMC Evolutionary Biology, 2013, 13, 269.	3.2	18

#	Article	IF	CITATIONS
55	SPECIES DELIMITATION IN <scp><i>NICOTIANA</i></scp> SECT. <scp><i>SUAVEOLENTES</i></scp> (SOLANACEAE): RECIPROCAL ILLUMINATION LEADS TO RECOGNITION OF MANY NEW SPECIES. Curtis's Botanical Magazine, 2021, 38, 266-286.	0.1	17
56	Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, <i>Nicotiana</i> section <i>Suaveolentes</i> (Solanaceae). Annals of Botany, 2023, 131, 123-142.	1.4	16
57	Systematics and evolution of the Old World Ebenaceae, a review with emphasis on the large genusDiospyrosand its radiation in New Caledonia. Botanical Journal of the Linnean Society, 2019, 189, 99-114.	0.8	14
58	Polygenic routes lead to parallel altitudinal adaptation in <i>Heliosperma pusillum</i> (Caryophyllaceae). Molecular Ecology, 2023, 32, 1832-1847.	2.0	13
59	Congruent evolutionary responses of European steppe biota to late Quaternary climate change. Nature Communications, 2022, 13, 1921.	5.8	11
60	Population structure in Neotropical plants: Integrating pollination biology, topography and climatic niches. Molecular Ecology, 2022, 31, 2264-2280.	2.0	10
61	Genomic insights into recent species divergence in $\langle i \rangle$ Nicotiana benthamiana $\langle i \rangle$ and natural variation in $\langle i \rangle$ Rdr1 $\langle i \rangle$ gene controlling viral susceptibility. Plant Journal, 2022, 111, 7-18.	2.8	9
62	Parental divergence and hybrid speciation in angiosperms revisited. Taxon, 2011, 60, 1241-1244.	0.4	8
63	Spatial and Ecological Drivers of Genetic Structure in Greek Populations of Alkanna tinctoria (Boraginaceae), a Polyploid Medicinal Herb. Frontiers in Plant Science, 2021, 12, 706574.	1.7	7
64	Orchid colonization: multiple parallel dispersal events and mosaic genetic structure in Dactylorhiza majalis ssp. lapponica on the Baltic island of Gotland. Annals of Botany, 2018, 122, 1019-1032.	1.4	6
65	Parental divergence and hybrid speciation in angiosperms revisited. Taxon, 2011, 60, 1241-1244.	0.4	6
66	The polymorphic early marsh orchids, $\langle i \rangle$ Dactylorhiza incarnata $\langle i \rangle$ s.l. (Orchidaceae), at Lough Gealain, Ireland. New Journal of Botany, 2011, 1, 16-23.	0.2	5
67	Hybridization and speciation in angiosperms: arole for pollinator shifts?. Journal of Biology, 2010, 9, 21.	2.7	2
68	The Evolutionary History of New Zealand Deschampsia Is Marked by Long-Distance Dispersal, Endemism, and Hybridization. Biology, 2021, 10, 1001.	1.3	1
69	Dispersal in plants. A population perspective by R. Cousens, C. Dytham & R. Law. Oxford: Oxford University Press, 2008. 221 pp. Hardback: ISBN 978-0-19-929911-9. £75. Paperback: ISBN 978-0-19-929912-6. £39.95 Botanical Journal of the Linnean Society, 2012, 170, 132-133.	0.8	0
70	Corrigendum to "Genetic, cytological and morphological differentiation within the Balkan-Carpathian Sesleria rigida sensu Fl. Eur. (Poaceae), a taxonomically intricate tetraploid-octoploid complex― Taxon, 2013, 62, 1364-1364.	0.4	0
71	Epigenetic information – Unexplored source of natural variation. Lankesteriana, 2015, 11, .	0.2	0