
Christopher J Still

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6365165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Origins of C ₄ Grasslands: Integrating Evolutionary and Ecosystem Science. Science, 2010, 328, 587-591.	6.0	899
2	Global distribution of C3and C4vegetation: Carbon cycle implications. Global Biogeochemical Cycles, 2003, 17, 6-1-6-14.	1.9	677
3	The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 2003, 17, .	1.9	536
4	Comment on "The global tree restoration potential― Science, 2019, 366, .	6.0	185
5	Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. Oecologia, 2011, 167, 265-278.	0.9	169
6	Climate, phylogeny and the ecological distribution of C4 grasses. Ecology Letters, 2008, 11, 266-276.	3.0	162
7	Simulation of carbon isotope discrimination of the terrestrial biosphere. Global Biogeochemical Cycles, 2005, 19, .	1.9	143
8	Significance of summer fog and overcast for drought stress and ecological functioning of coastal California endemic plant species. Journal of Biogeography, 2009, 36, 783-799.	1.4	129
9	A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses. Global Biogeochemical Cycles, 2002, 16, 42-1-42-14.	1.9	125
10	The relevance of phylogeny to studies of global change. Trends in Ecology and Evolution, 2007, 22, 243-249.	4.2	122
11	Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Global Biogeochemical Cycles, 2002, 16, 3-1-3-18.	1.9	113
12	Fire emissions from C3and C4vegetation and their influence on interannual variability of atmospheric CO2and δ13CO2. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	108
13	A multiâ€isotope (Î′ ¹³ C, Î′ ¹⁵ N, Î′ ² H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere, 2012, 3, 1-20.	1.0	83
14	Continuous, long-term, high-frequency thermal imaging of vegetation: Uncertainties and recommended best practices. Agricultural and Forest Meteorology, 2016, 228-229, 315-326.	1.9	82
15	Thermal imaging in plant and ecosystem ecology: applications and challenges. Ecosphere, 2019, 10, e02768.	1.0	76
16	Urbanization causes increased cloud base height and decreased fog in coastal Southern California. Geophysical Research Letters, 2015, 42, 1527-1536.	1.5	74
17	Climate, CO ₂ , and the history of North American grasses since the Last Glacial Maximum. Science Advances, 2016, 2, e1501346.	4.7	72
18	Influence of clouds and diffuse radiation on ecosystemâ€atmosphere CO ₂ and CO ¹⁸ O exchanges. Journal of Geophysical Research, 2009, 114, .	3.3	71

#	Article	IF	CITATIONS
19	The nocturnal water cycle in an openâ€canopy forest. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,225.	1.2	70
20	Tropical forest temperature thresholds for gross primary productivity. Ecosphere, 2018, 9, e02311.	1.0	69
21	The contribution of C 3 and C 4 plants to the carbon cycle of a tallgrass prairie: an isotopic approach. Oecologia, 2003, 136, 347-359.	0.9	67
22	Canopy skin temperature variations in relation to climate, soil temperature, and carbon flux at a ponderosa pine forest in central Oregon. Agricultural and Forest Meteorology, 2016, 226-227, 161-173.	1.9	64
23	Triple oxygen isotope composition of tropospheric carbon dioxide as a tracer of terrestrial gross carbon fluxes. Geophysical Research Letters, 2005, 32, .	1.5	63
24	Improving our understanding of environmental controls on the distribution of C ₃ and C ₄ grasses. Global Change Biology, 2013, 19, 184-196.	4.2	61
25	The influence of summertime fog and overcast clouds on the growth of a coastal Californian pine: a tree-ring study. Oecologia, 2008, 156, 601-611.	0.9	60
26	Comment on "The extent of forest in dryland biomes― Science, 2017, 358, .	6.0	57
27	In situ photosynthetic freezing tolerance for plants exposed to a global warming manipulation in the Rocky Mountains, Colorado, USA. New Phytologist, 2004, 162, 331-341.	3.5	56
28	Evaluating patterns of fog water deposition and isotopic composition on the California Channel Islands. Water Resources Research, 2007, 43, .	1.7	55
29	18 O composition of CO2 and H2 O ecosystem pools and fluxes in a tallgrass prairie: Simulations and comparisons to measurements. Global Change Biology, 2003, 9, 1567-1581.	4.2	54
30	Remotely sensed heat anomalies linked with Amazonian forest biomass declines. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	54
31	Evaluating spatial patterns of drought-induced tree mortality in a coastal California pine forest. Forest Ecology and Management, 2014, 315, 43-53.	1.4	54
32	ls carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. Global Change Biology, 2006, 12, 260-271.	4.2	48
33	Imaging canopy temperature: shedding (thermal) light on ecosystem processes. New Phytologist, 2021, 230, 1746-1753.	3.5	47
34	Isoscapes to Address Large cale Earth Science Challenges. Eos, 2009, 90, 109-110.	0.1	45
35	Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem. Global Change Biology, 2013, 19, 484-497.	4.2	43
36	Land surface skin temperature captures thermal environments of <scp><scp>C₃</scp></scp> and <scp><scp>C₄</scp></scp> grasses. Global Ecology and Biogeography, 2014, 23, 286-296.	2.7	42

#	Article	IF	CITATIONS
37	Using Tree Rings to Predict the Response of Tree Growth to Climate Change in the Continental United States during the Twenty-First Century. Earth Interactions, 2010, 14, 1-20.	0.7	40
38	Thermal infrared imaging of conifer leaf temperatures: Comparison to thermocouple measurements and assessment of environmental influences. Agricultural and Forest Meteorology, 2018, 248, 361-371.	1.9	40
39	Polyploidy influences plant–environment interactions in quaking aspen (Populus tremuloides Michx.). Tree Physiology, 2018, 38, 630-640.	1.4	38
40	Fire deficits have increased drought sensitivity in dry conifer forests: Fire frequency and treeâ€ring carbon isotope evidence from Central Oregon. Global Change Biology, 2019, 25, 1247-1262.	4.2	38
41	Large-scale plant light-use efficiency inferred from the seasonal cycle of atmospheric CO2. Global Change Biology, 2004, 10, 1240-1252.	4.2	36
42	Biogeographically distinct controls on <scp>C</scp> ₃ and <scp>C</scp> ₄ grass distributions: merging community and physiological ecology. Global Ecology and Biogeography, 2015, 24, 304-313.	2.7	33
43	Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest. Oecologia, 2016, 181, 137-148.	0.9	29
44	Changes in tree drought sensitivity provided early warning signals to the California drought and forest mortality event. Global Change Biology, 2022, 28, 1119-1132.	4.2	29
45	Fog drip maintains dry season ecological function in a California coastal pine forest. Ecosphere, 2016, 7, e01364.	1.0	28
46	Trends and controls on water-use efficiency of an old-growth coniferous forest in the Pacific Northwest. Environmental Research Letters, 2019, 14, 074029.	2.2	28
47	Representing plant diversity in land models: An evolutionary approach to make "Functional Types― more functional. Global Change Biology, 2022, 28, 2541-2554.	4.2	28
48	Estimating subpixel fire sizes and temperatures from ASTER using multiple endmember spectral mixture analysis. International Journal of Remote Sensing, 2009, 30, 5851-5864.	1.3	24
49	Persistence and Plasticity in Conifer Waterâ€Use Strategies. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2018JG004845.	1.3	24
50	Spatial and Temporal Patterns of Cloud Cover and Fog Inundation in Coastal California: Ecological Implications. Earth Interactions, 2016, 20, 1-19.	0.7	23
51	Seasonal and interannual variability in ¹³ C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 181.	0.8	21
52	Multiâ€century stasis in C ₃ and C ₄ grass distributions across the contiguous United States since the industrial revolution. Journal of Biogeography, 2017, 44, 2564-2574.	1.4	21
53	Lineageâ€based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models. New Phytologist, 2020, 228, 15-23.	3.5	20
54	Global warming and amphibian losses; The proximate cause of frog declines? (Reply). Nature, 2007, 447, E5-E6.	13.7	19

#	Article	IF	CITATIONS
55	Adaptive evolution in a conifer hybrid zone is driven by a mosaic of recently introgressed and background genetic variants. Communications Biology, 2021, 4, 160.	2.0	17
56	Assessing earth system model predictions of C ₄ grass cover in North America: From the glacial era to the end of this century. Global Ecology and Biogeography, 2019, 28, 145-157.	2.7	16
57	Plant Water Uptake Thresholds Inferred From Satellite Soil Moisture. Geophysical Research Letters, 2020, 47, e2020GL087077.	1.5	16
58	Phenology and Productivity of C3 and C4 Grasslands in Hawaii. PLoS ONE, 2014, 9, e107396.	1.1	16
59	Linking Physical Geography Education and Research Through the Development of an Environmental Sensing Network and Project-Based Learning. Journal of Geoscience Education, 2010, 58, 262-274.	0.8	15
60	Variations in Subpixel Fire Properties with Season and Land Cover in Southern Africa. Earth Interactions, 2010, 14, 1-29.	0.7	15
61	Large Uptake of Atmospheric OCS Observed at a Moist Old Growth Forest: Controls and Implications for Carbon Cycle Applications. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3424-3438.	1.3	15
62	Climatic Controls on C4 Grassland Distributions During the Neogene: A Model-Data Comparison. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	15
63	Spatial Patterns and Trends of Summertime Low Cloudiness for the Pacific Northwest, 1996–2017. Geophysical Research Letters, 2020, 47, e2020GL088121.	1.5	15
64	Using Hyperspectral Imagery to Detect an Invasive Fungal Pathogen and Symptom Severity in Pinus strobiformis Seedlings of Different Genotypes. Remote Sensing, 2020, 12, 4041.	1.8	15
65	Ecosystem fluxes of carbonyl sulfide in an old-growth forest: temporal dynamics and responses to diffuse radiation and heat waves. Biogeosciences, 2018, 15, 7127-7139.	1.3	13
66	Impact of fog drip versus fog immersion on the physiology of Bishop pine saplings. Functional Plant Biology, 2017, 44, 339.	1.1	12
67	Multi-Scale Sensor Fusion With an Online Application: Integrating GOES, MODIS, and Webcam Imagery for Environmental Monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3, 497-506.	2.3	10
68	Fog and live fuel moisture in coastal California shrublands. Ecosphere, 2018, 9, e02167.	1.0	10
69	When a cuvette is not a canopy: A caution about measuring leaf temperature during gas exchange measurements. Agricultural and Forest Meteorology, 2019, 279, 107737.	1.9	10
70	Linking tree physiological constraints with predictions of carbon and water fluxes at an oldâ \in growth coniferous forest. Ecosphere, 2019, 10, e02692.	1.0	9
71	Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations. Biogeosciences, 2021, 18, 6077-6091.	1.3	9
72	Climate and lawn management interact to control C4plant distribution in residential lawns across seven U.S. cities. Ecological Applications, 2019, 29, e01884.	1.8	8

#	Article	IF	CITATIONS
73	Poor relationships between NEON Airborne Observation Platform data and fieldâ€based vegetation traits at a mesic grassland. Ecology, 2022, 103, e03590.	1.5	8
74	Influences of the hydrological cycle on observed interannual variations in atmospheric CO ¹⁸ O. Journal of Geophysical Research, 2011, 116, .	3.3	6
75	Probabilistic inference of ecohydrological parameters using observations from point to satellite scales. Hydrology and Earth System Sciences, 2018, 22, 3229-3243.	1.9	5
76	Introducing a sensor to measure budburst and its environmental drivers. Frontiers in Plant Science, 2015, 6, 123.	1.7	4
77	What Drives Carbon Isotope Fractionation by the Terrestrial Biosphere?. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3108-3110.	1.3	4
78	Calibration Strategies for Detecting Macroscale Patterns in NEON Atmospheric Carbon Isotope Observations. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005862.	1.3	4
79	Model selection and timing of acquisition date impacts classification accuracy: A case study using hyperspectral imaging to detect white pine blister rust over time. Computers and Electronics in Agriculture, 2021, 191, 106555.	3.7	4
80	The NEON Daily Isotopic Composition of Environmental Exchanges Dataset. Scientific Data, 2022, 9, .	2.4	4
81	Editorial: Revisiting the Biome Concept With A Functional Lens. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	3
82	Enhanced Photosynthesis and Transpiration in an Old Growth Forest Due To Wildfire Smoke. Geophysical Research Letters, 2022, 49, .	1.5	2
83	Canopy wetting patterns and the determinants of dry season dewfall in an old growth Douglas-fir canopy. Agricultural and Forest Meteorology, 2022, 323, 109069.	1.9	1