Ricardo Riguera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/63651/publications.pdf

Version: 2024-02-01

246 papers 11,358 citations

51 h-index 91 g-index

299 all docs 299 docs citations

times ranked

299

11038 citing authors

#	Article	IF	CITATIONS
1	The Role of Polymer–AuNP Interaction in the Stimuliâ€Response Properties of PPA–AuNP Nanocomposites. Macromolecular Rapid Communications, 2022, 43, e2100616.	2.0	4
2	Photochemical Electrocyclization of Poly(phenylacetylene)s: Unwinding Helices to Elucidate their 3D Structure in Solution. Angewandte Chemie, 2021, 133, 8176-8184.	1.6	8
3	Photochemical Electrocyclization of Poly(phenylacetylene)s: Unwinding Helices to Elucidate their 3D Structure in Solution. Angewandte Chemie - International Edition, 2021, 60, 8095-8103.	7.2	19
4	Dynamic Chiral PPA–AgNP Nanocomposites: Aligned Silver Nanoparticles Decorating Helical Polymers. Chemistry of Materials, 2021, 33, 4805-4812.	3.2	18
5	Tuning the helical sense and elongation of polymers through the combined action of the two components of tetraalkylammonium-anion salts. Giant, 2021, 7, 100068.	2.5	16
6	Chiral gold–PPA nanocomposites with tunable helical sense and morphology. Nanoscale Horizons, 2020, 5, 495-500.	4.1	17
7	Chiral Overpass Induction in Dynamic Helical Polymers Bearing Pendant Groups with Two Chiral Centers. Angewandte Chemie, 2020, 132, 4567-4573.	1.6	13
8	Chiral Overpass Induction in Dynamic Helical Polymers Bearing Pendant Groups with Two Chiral Centers. Angewandte Chemie - International Edition, 2020, 59, 4537-4543.	7.2	39
9	From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angewandte Chemie, 2020, 132, 23932-23938.	1.6	6
10	From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angewandte Chemie - International Edition, 2020, 59, 23724-23730.	7.2	26
11	Chiral information harvesting in helical poly(acetylene) derivatives using oligo(<i>p</i> -phenyleneethynylene)s as spacers. Chemical Science, 2020, 11, 7182-7187.	3.7	28
12	A Stimuliâ€Responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers. Angewandte Chemie, 2020, 132, 8694-8700.	1.6	20
13	A Stimuliâ€Responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers. Angewandte Chemie - International Edition, 2020, 59, 8616-8622.	7.2	59
14	Polymeric Helical Structures à la Carte by Rational Design of Monomers. Macromolecules, 2020, 53, 3182-3193.	2.2	22
15	Chiral Conflict as a Method to Create Stimuliâ€Responsive Materials Based on Dynamic Helical Polymers. Angewandte Chemie, 2019, 131, 13499-13503.	1.6	20
16	Chiral Conflict as a Method to Create Stimuliâ€Responsive Materials Based on Dynamic Helical Polymers. Angewandte Chemie - International Edition, 2019, 58, 13365-13369.	7.2	45
17	Decoding the ECD Spectra of Poly(phenylacetylene)s: Structural Significance. ACS Omega, 2019, 4, 5233-5240.	1.6	32
18	Helical Colorimetric Sensors: Stimuliâ€Directed Colorimetric Interconversion of Helical Polymers Accompanied by a Tunable Selfâ€Assembly Process (Small 13/2019). Small, 2019, 15, 1970070.	5.2	10

#	Article	IF	CITATIONS
19	Stimuliâ€Directed Colorimetric Interconversion of Helical Polymers Accompanied by a Tunable Selfâ€Assembly Process. Small, 2019, 15, 1805413.	5.2	22
20	Meet Our Editor-in-Chief. Current Chemical Biology, 2019, 13, 183-184.	0.2	0
21	Tuning the Size of Nanoassembles: A Hierarchical Transfer of Information from Dendrimers to Polyion Complexes. Angewandte Chemie, 2018, 130, 5371-5375.	1.6	1
22	Multistate Chiroptical Switch Triggered by Stimuli-Responsive Chiral Teleinduction. Chemistry of Materials, 2018, 30, 2493-2497.	3.2	39
23	Sequential Induction of Chirality in Helical Polymers: From the Stereocenter to the Achiral Solvent. Journal of Physical Chemistry Letters, 2018, 9, 2266-2270.	2.1	28
24	Predicting the Helical Sense of Poly(phenylacetylene)s from their Electron Circular Dichroism Spectra. Angewandte Chemie, 2018, 130, 3728-3732.	1.6	16
25	Predicting the Helical Sense of Poly(phenylacetylene)s from their Electron Circular Dichroism Spectra. Angewandte Chemie - International Edition, 2018, 57, 3666-3670.	7.2	44
26	Tuning the Size of Nanoassembles: A Hierarchical Transfer of Information from Dendrimers to Polyion Complexes. Angewandte Chemie - International Edition, 2018, 57, 5273-5277.	7.2	28
27	Fast NMR Screening of Macromolecular Complexes by a Paramagnetic Spin Relaxation Filter. ACS Omega, 2018, 3, 2974-2983.	1.6	6
28	Chiral Coalition in Helical Sense Enhancement of Copolymers: The Role of the Absolute Configuration of Comonomers. Journal of the American Chemical Society, 2018, 140, 667-674.	6.6	39
29	Filtering the NMR Spectra of Complex Mixtures through Polymerâ€Mediated Paramagnetic Spin Relaxation. Chemistry - A European Journal, 2018, 24, 19236-19242.	1.7	4
30	Poly(phenylacetylene) Amines: A General Route to Water-Soluble Helical Polyamines. Chemistry of Materials, 2018, 30, 6908-6914.	3.2	40
31	Chiral-to-Chiral Communication in Polymers: A Unique Approach To Control Both Helical Sense and Chirality at the Periphery. Journal of the American Chemical Society, 2018, 140, 12239-12246.	6.6	47
32	A general route to chiral nanostructures from helical polymers: P/M switch via dynamic metal coordination. Polymer Chemistry, 2017, 8, 3740-3745.	1.9	36
33	Biodegradable PEG–dendritic block copolymers: synthesis and biofunctionality assessment as vectors of siRNA. Journal of Materials Chemistry B, 2017, 5, 4901-4917.	2.9	15
34	A dendrimer–hydrophobic interaction synergy improves the stability of polyion complex micelles. Polymer Chemistry, 2017, 8, 2528-2537.	1.9	23
35	The role of the secondary structure of helical poly(phenylacetylene)s in the formation of nanoparticles from polymer–metal complexes (HPMCs). Nanoscale, 2017, 9, 17752-17757.	2.8	35
36	Multipodal dynamic coordination involving cation–i€ interactions to control the structure of helical polymers. Chemical Communications, 2017, 53, 8573-8576.	2.2	30

#	Article	IF	CITATIONS
37	Chiral nanostructure in polymers under different deposition conditions observed using atomic force microscopy of monolayers: poly(phenylacetylene)s as a case study. Chemical Communications, 2017, 53, 481-492.	2.2	43
38	Simultaneous Adjustment of Size and Helical Sense of Chiral Nanospheres and Nanotubes Derived from an Axially Racemic Poly(phenylacetylene). Small, 2017, 13, 1602398.	5.2	26
39	Absolute Stereochemistry by NMR Spectroscopy. , 2017, , 1-14.		0
40	The Effect of PEGylation on Multivalent Binding: A Surface Plasmon Resonance and Isothermal Titration Calorimetry Study with Structurally Diverse PEGâ€Dendritic GATG Copolymers. ChemNanoMat, 2016, 2, 437-446.	1.5	10
41	Chiral Nanostructures from Helical Copolymer-Metal Complexes: Tunable Cation-Ï€ Interactions and Sergeants and Soldiers Effect. Small, 2016, 12, 238-244.	5.2	43
42	Enantiomeric Nanostructures: Chiral Nanostructures from Helical Copolymer-Metal Complexes: Tunable Cation-Ï€ Interactions and Sergeants and Soldiers Effect (Small 2/2016). Small, 2016, 12, 237-237.	5.2	0
43	Architecture of Chiral Poly(phenylacetylene)s: From Compressed/Highly Dynamic to Stretched/Quasi-Static Helices. Journal of the American Chemical Society, 2016, 138, 9620-9628.	6.6	93
44	Joint NMR and Solid-Phase Microextraction–Gas Chromatography Chemometric Approach for Very Complex Mixtures: Grape and Zone Identification in Wines. Analytical Chemistry, 2016, 88, 6239-6246.	3.2	10
45	Helical sense selective domains and enantiomeric superhelices generated by Langmuir–Schaefer deposition of an axially racemic chiral helical polymer. Nanoscale, 2016, 8, 3362-3367.	2.8	34
46	Supramolecular Assemblies from Poly(phenylacetylene)s. Chemical Reviews, 2016, 116, 1242-1271.	23.0	233
47	The leading role of cation–π interactions in polymer chemistry: the control of the helical sense in solution. Polymer Chemistry, 2015, 6, 4725-4733.	1.9	55
48	Reversible assembly of enantiomeric helical polymers: from fibers to gels. Chemical Science, 2015, 6, 246-253.	3.7	42
49	Systemically Administered Brain-Targeted Nanoparticles Transport Peptides across the Blood—Brain Barrier and Provide Neuroprotection. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 469-475.	2.4	97
50	Predicting PSR Filters by Transverse Relaxation Enhancements. Analytical Chemistry, 2015, 87, 760-767.	3.2	8
51	Designing chiral derivatizing agents (CDA) for the NMR assignment of the absolute configuration: a theoretical and experimental approach with thiols as a case study. Tetrahedron, 2014, 70, 3276-3283.	1.0	17
52	The ON/OFF switching by metal ions of the "Sergeants and Soldiers―chiral amplification effect on helical poly(phenylacetylene)s. Chemical Science, 2014, 5, 2170-2176.	3.7	71
53	GATG Dendrimers and PEGylated Block Copolymers: from Synthesis to Bioapplications. AAPS Journal, 2014, 16, 948-961.	2.2	22
54	Nanospheres, Nanotubes, Toroids, and Gels with Controlled Macroscopic Chirality. Angewandte Chemie - International Edition, 2014, 53, 13720-13724.	7.2	66

#	Article	IF	CITATIONS
55	Stepwise Filtering of the Internal Layers of Dendrimers by Transverse-Relaxation-Edited NMR. Journal of the American Chemical Society, 2013, 135, 11513-11516.	6.6	30
56	Controlled modulation of the helical sense and the elongation of poly(phenylacetylene)s by polar and donor effects. Chemical Science, 2013, 4, 2735.	3.7	111
57	Disclosing an NMR-Invisible Fraction in Chitosan and PEGylated Copolymers and Its Role on the Determination of Degrees of Substitution. Molecular Pharmaceutics, 2013, 10, 3225-3231.	2.3	21
58	Real-Time Evaluation of Binding Mechanisms in Multivalent Interactions: A Surface Plasmon Resonance Kinetic Approach. Journal of the American Chemical Society, 2013, 135, 5966-5969.	6.6	86
59	Helical Polymer–Metal Complexes: The Role of Metal lons on the Helicity and the Supramolecular Architecture of Poly(phenylacetylene)s. Advances in Polymer Science, 2013, , 123-140.	0.4	20
60	The Dynamics of Dendrimers by NMR Relaxation: Interpretation Pitfalls. Journal of the American Chemical Society, 2013, 135, 1972-1977.	6.6	49
61	Anti-tumor efficacy of chitosan-g-poly(ethylene glycol) nanocapsules containing docetaxel: Anti-TMEFF-2 functionalized nanocapsules vs. non-functionalized nanocapsules. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 330-337.	2.0	42
62	Chitosan hydrophobic domains are favoured at low degree of acetylation and molecular weight. Polymer, 2013, 54, 2081-2087.	1.8	26
63	A new potential nano-oncological therapy based on polyamino acid nanocapsules. Journal of Controlled Release, 2013, 169, 10-16.	4.8	34
64	Dendrimers reduce toxicity of $\hat{Al^2}$ 1-28 peptide during aggregation and accelerate fibril formation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1372-1378.	1.7	49
65	Nanospheres with Tunable Size and Chirality from Helical Polymer–Metal Complexes. Journal of the American Chemical Society, 2012, 134, 19374-19383.	6.6	99
66	Exploring the efficiency of gallic acid-based dendrimers and their block copolymers with PEG as gene carriers. Nanomedicine, 2012, 7, 1667-1681.	1.7	22
67	PEG-dendritic block copolymers for biomedical applications. New Journal of Chemistry, 2012, 36, 205-210.	1.4	51
68	Peripheral Functionalization of Dendrimers Regulates Internalization and Intracellular Trafficking in Living Cells. Bioconjugate Chemistry, 2012, 23, 1059-1068.	1.8	39
69	Assignment of the Absolute Configuration of Polyfunctional Compounds by NMR Using Chiral Derivatizing Agents. Chemical Reviews, 2012, 112, 4603-4641.	23.0	175
70	Click Chemistry with Polymers, Dendrimers, and Hydrogels for Drug Delivery. Pharmaceutical Research, 2012, 29, 902-921.	1.7	109
71	Click Chemistry for Drug Delivery Nanosystems. Pharmaceutical Research, 2012, 29, 1-34.	1.7	164
72	Dendritic MRI Contrast Agents: An Efficient Prelabeling Approach Based on CuAAC. Biomacromolecules, 2011, 12, 2902-2907.	2.6	37

#	Article	IF	Citations
73	Efficient Multigram Synthesis of the Repeating Unit of Gallic Acid-Triethylene Glycol Dendrimers. Organic Letters, 2011, 13, 4522-4525.	2.4	24
74	NMR methods for unravelling the spectra of complex mixtures. Natural Product Reports, 2011, 28, 78-98.	5. 2	111
75	Reliable and Efficient Procedures for the Conjugation of Biomolecules through Huisgen Azide–Alkyne Cycloadditions. Angewandte Chemie - International Edition, 2011, 50, 8794-8804.	7.2	287
76	Chiral Amplification and Helicalâ€Sense Tuning by Mono―and Divalent Metals on Dynamic Helical Polymers. Angewandte Chemie - International Edition, 2011, 50, 11692-11696.	7.2	150
77	Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite. Biosensors and Bioelectronics, 2011, 26, 4423-4428.	5. 3	31
78	Using a Combination of Magnetic Anisotropic Effects for the Configurational Assignment of Amino Alcohols. Chemistry - an Asian Journal, 2010, 5, 2106-2112.	1.7	8
79	Hyaluronic Acid/Chitosan-g-Poly(ethylene glycol) Nanoparticles for Gene Therapy: An Application for pDNA and siRNA Delivery. Pharmaceutical Research, 2010, 27, 2544-2555.	1.7	83
80	The Use of a Single Derivative in the Configurational Assignment of Ketone Cyanohydrins. European Journal of Organic Chemistry, 2010, 2010, 6520-6524.	1.2	7
81	Control of the Helicity of Poly(phenylacetylene)s: From the Conformation of the Pendant to the Chirality of the Backbone. Angewandte Chemie - International Edition, 2010, 49, 1430-1433.	7.2	85
82	Evaluation of Amino Acids as Chiral Ligands for the Enantiodifferentiation of Carbohydrates by TOCSY NMR. Journal of Organic Chemistry, 2010, 75, 3878-3881.	1.7	13
83	Coreâ^'Shell Dendriplexes with Sterically Induced Stoichiometry for Gene Delivery. Macromolecules, 2010, 43, 6953-6961.	2.2	25
84	13C NMR as a general tool for the assignment of absolute configuration. Chemical Communications, 2010, 46, 7903.	2.2	41
85	Dendrimers as Potential Inhibitors of the Dimerization of the Capsid Protein of HIV-1. Biomacromolecules, 2010, 11, 2069-2078.	2.6	41
86	Dynamics of Chitosan by ¹ H NMR Relaxation. Biomacromolecules, 2010, 11, 2079-2086.	2.6	36
87	The dynamics of GATG glycodendrimers by NMR diffusion and quantitative 13C relaxation. Physical Chemistry Chemical Physics, 2010, 12, 6587.	1.3	25
88	Chiral 1,2-Diols: The Assignment of Their Absolute Configuration by NMR Made Easy. Organic Letters, 2010, 12, 208-211.	2.4	36
89	The Stereochemistry of 1,2,3‶riols Revealed by ¹ Hâ€NMR Spectroscopy: Principles and Applications. Chemistry - A European Journal, 2009, 15, 11963-11975.	1.7	19
90	A Nanomedicine Transports a Peptide Caspase-3 Inhibitor across the Blood–Brain Barrier and Provides Neuroprotection. Journal of Neuroscience, 2009, 29, 13761-13769.	1.7	169

#	Article	IF	CITATIONS
91	Surpassing the Use of Copper in the Click Functionalization of Polymeric Nanostructures: A Strain-Promoted Approach. Journal of the American Chemical Society, 2009, 131, 5748-5750.	6.6	144
92	Probing the Relevance of Lectin Clustering for the Reliable Evaluation of Multivalent Carbohydrate Recognition. Journal of the American Chemical Society, 2009, 131, 17765-17767.	6.6	87
93	Absolute Configuration of Ketone Cyanohydrins by 1H NMR: The Special Case of Polar Substituted Tertiary Alcohols. Organic Letters, 2009, 11, 53-56.	2.4	22
94	Ionically Crosslinked Chitosan Nanoparticles as Gene Delivery Systems: Effect of PEGylation Degree on & lt; > n Vitro& t; >	0.5	58
95	Preparation and evaluation of alpha-phenyl-n-tert-butyl nitrone (PBN)-encapsulated chitosan and PEGylated chitosan nanoparticles. Die Pharmazie, 2009, 64, 436-9.	0.3	5
96	DTD, an antiâ€inflammatory ditriazine, inhibits angiogenesis <i>in vitro</i> and <i>in vivo</i> Journal of Cellular and Molecular Medicine, 2008, 12, 1211-1219.	1.6	2
97	In tube determination of the absolute configuration of \hat{l}_{\pm} - and \hat{l}^2 -hydroxy acids by NMR via chiral BINOL borates. Chemical Communications, 2008, , 4147.	2.2	40
98	Cross Interaction Between Auxiliaries: The Chirality of Amino Alcohols by NMR. Organic Letters, 2008, 10, 2729-2732.	2.4	22
99	Resin-Bound Chiral Derivatizing Agents for Assignment of Configuration by NMR Spectroscopy. Journal of Organic Chemistry, 2008, 73, 5714-5722.	1.7	49
100	Synthesis and supramolecular assembly of clicked anionic dendritic polymers into polyion complex micelles. Chemical Communications, 2008, , 3136.	2.2	43
101	Assigning the Configuration of Amino Alcohols by NMR: A Single Derivatization Method. Organic Letters, 2008, 10, 2733-2736.	2.4	24
102	Conjugation of Bioactive Ligands to PEG-Grafted Chitosan at the Distal End of PEG. Biomacromolecules, 2007, 8, 833-842.	2.6	59
103	Antitumor Activity, X-ray Crystal Structure, and DNA Binding Properties of Thiocoraline A, a Natural Bisintercalating Thiodepsipeptide. Journal of Medicinal Chemistry, 2007, 50, 3322-3333.	2.9	58
104	Chiral Thiols:  The Assignment of Their Absolute Configuration by 1H NMR. Organic Letters, 2007, 9, 5015-5018.	2.4	28
105	Paramagnetic NMR Relaxation in Polymeric Matrixes: $\hat{a} \in \mathbb{Z}$ Sensitivity Enhancement and Selective Suppression of Embedded Species ($\langle \sup 1 \langle \sup 1 \rangle 3 \langle \sup 2 \rangle $ American Chemical Society, 2007, 129, 15164-15173.	6.6	14
106	Challenging the absence of observable hydrogens in the assignment of absolute configurations by NMR: application to chiral primary alcohols. Chemical Communications, 2007, , 1456-1458.	2.2	31
107	Relative and Absolute Stereochemistry of Secondary/Secondary Diols: Low-Temperature1H NMR of Their bis-MPA Esters§. Journal of Organic Chemistry, 2007, 72, 2297-2301.	1.7	25
108	The assignment of absolute configuration of cyanohydrins by NMR. Chemical Communications, 2006, , 1422.	2.2	19

#	Article	IF	Citations
109	"Clickable―PEGâ^'Dendritic Block Copolymers. Biomacromolecules, 2006, 7, 3104-3111.	2.6	107
110	Role of Barium(II) in the Determination of the Absolute Configuration of Chiral Amines by 1H NMR Spectroscopy. Journal of Organic Chemistry, 2006, 71, 1119-1130.	1.7	39
111	Antiplasmodial Metabolites Isolated from the Marine OctocoralMuricea austera. Journal of Natural Products, 2006, 69, 1379-1383.	1.5	59
112	The1H NMR Method for the Determination of the Absolute Configuration of 1,2,3-prim,sec,sec-Triols‡. Organic Letters, 2006, 8, 4449-4452.	2.4	24
113	A Click Approach to Unprotected Glycodendrimersâ€. Macromolecules, 2006, 39, 2113-2120.	2.2	209
114	The Assignment of the Absolute Configuration of 1,2-Diols by Low-Temperature NMR of a Single MPA Derivative ChemInform, 2006, 37, no.	0.1	0
115	Tuberosides A, B, and C, Novel Triterpenoid Saponins from the Hypoglucaemic Fraction of Ullucus tuberosus. Liebigs Annalen, 2006, 1996, 781-784.	0.8	0
116	Optimal routine conditions for the determination of the degree of acetylation of chitosan by 1H-NMR. Carbohydrate Polymers, 2005, 61, 155-161.	5.1	119
117	The Prediction of the Absolute Stereochemistry of Primary and Secondary 1,2-Diols by1H NMR Spectroscopy: Principles and Applications. Chemistry - A European Journal, 2005, 11, 5509-5522.	1.7	39
118	Antiprotozoal Activity AgainstPlasmodium falciparum. andTrypanosoma cruzi. of Aeroplysinin-1 Isolated from the New SpongeAplysina chiriquensis Pharmaceutical Biology, 2005, 43, 762-765.	1.3	10
119	The Assignment of the Absolute Configuration of 1,2-Diols by Low-Temperature NMR of a Single MPA Derivative. Organic Letters, 2005, 7, 4855-4858.	2.4	28
120	Leptolide, a New Furanocembranolide Diterpene fromLeptogorgiaalba. Journal of Natural Products, 2005, 68, 614-616.	1.5	44
121	Development and Brain Delivery of Chitosanâ´'PEG Nanoparticles Functionalized with the Monoclonal Antibody OX26. Bioconjugate Chemistry, 2005, 16, 1503-1511.	1.8	279
122	Absolute configuration of amino alcohols by 1H-NMR. Chemical Communications, 2005, , 5554.	2.2	19
123	Determining the Absolute Stereochemistry of Secondary/Secondary Diols by1H NMR:Â Basis and Applications. Journal of Organic Chemistry, 2005, 70, 3778-3790.	1.7	154
124	A new pyrazolo pyrimidine derivative inhibitor of cyclooxygenase-2 with anti-angiogenic activity. European Journal of Pharmacology, 2004, 488, 225-230.	1.7	36
125	The Assignment of Absolute Configuration by NMRâ€. Chemical Reviews, 2004, 104, 17-118.	23.0	952
126	The Assignment of Absolute Configuration by NMR. ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	Citations
127	Boc–phenylglycine: a chiral solvating agent for the assignment of the absolute configuration of amino alcohols and their ethers by NMR. Tetrahedron: Asymmetry, 2004, 15, 1825-1829.	1.8	26
128	l-Galactose as a natural product: isolation from a marine octocoral of the first \hat{l}_{\pm} -l-galactosyl saponin. Tetrahedron Letters, 2004, 45, 7833-7836.	0.7	25
129	In vitro efficacy of new antiprotozoals against Philasterides dicentrarchi (Ciliophora,) Tj ETQq1 1 0.784314 rgBT /	Oyerlock 0.5	10 Tf 50 662 16
130	Piperazine N-Substituted Naphthyridines, Pyridothienopyrimidines and Pyridothienotriazines: New Antiprotozoals Active Against Philasterides dicentrarchi ChemInform, 2003, 34, no.	0.1	0
131	Piperazine N-substituted naphthyridines, pyridothienopyrimidines and pyridothienotriazines: new antiprotozoals active against Philasterides dicentrarchi. European Journal of Medicinal Chemistry, 2003, 38, 265-275.	2.6	83
132	6-Dimethylamino 1H-Pyrazolo[3,4-d]pyrimidine derivatives as new inhibitors of inflammatory mediators in intact cells. Bioorganic and Medicinal Chemistry, 2003, 11, 863-868.	1.4	46
133	dd-Diketopiperazines:Â Antibiotics Active againstVibrioanguillarumIsolated from Marine Bacteria Associated with Cultures ofPectenmaximus. Journal of Natural Products, 2003, 66, 1299-1301.	1.5	196
134	Triterpene Glycosides from the Far Eastern Sea CucumberCucumaria conicospermium. Journal of Natural Products, 2003, 66, 910-916.	1.5	34
135	"Mix and Shake―Method for Configurational Assignment by NMR:  Application to Chiral Amines and Alcohols. Organic Letters, 2003, 5, 2979-2982.	2.4	51
136	Triterpene Glycosides from the Deep-Water North-Pacific Sea CucumberSynallactesnozawaiMitsukuri. Journal of Natural Products, 2002, 65, 1802-1808.	1.5	22
137	Absolute Configuration of Secondary Alcohols by 1H NMR:  In Situ Complexation of α-Methoxyphenylacetic Acid Esters with Barium(II). Journal of Organic Chemistry, 2002, 67, 4579-4589.	1.7	61
138	A new ditriazine inhibitor of NF-κB modulates chronic inflammation and angiogenesis. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 365, 357-364.	1.4	5
139	Incorrect procedure for the assignment of the absolute configuration of carbonucleosides by NMR: MPA must not be used with primary alcohols. Tetrahedron: Asymmetry, 2002, 13, 919-921.	1.8	4
140	Simultaneous enantioresolution and assignment of absolute configuration of secondary alcohols by directly coupled HPLC–NMR of 9-AMA esters. Tetrahedron: Asymmetry, 2002, 13, 2149-2153.	1.8	29
141	Total Synthesis and Absolute Configuration of Minalemine A, a Guanidine Peptide from the Marine TunicateDidemnum rodriguesi. Journal of Organic Chemistry, 2001, 66, 4206-4213.	1.7	47
142	Pyrazolopyrimidines: synthesis, effect on histamine release from rat peritoneal mast cells and cytotoxic activity. European Journal of Medicinal Chemistry, 2001, 36, 321-332.	2.6	31
143	Determination of the absolute stereochemistry of alcohols and amines by NMR of the group directly linked to the chiral derivatizing reagent. Tetrahedron, 2001, 57, 2231-2236.	1.0	22
144	A practical guide for the assignment of the absolute configuration of alcohols, amines and carboxylic acids by NMR. Tetrahedron: Asymmetry, 2001, 12, 2915-2925.	1.8	312

#	Article	IF	Citations
145	The assignment of absolute configurations by NMR of arylmethoxyacetate derivatives: is this methodology being correctly used?. Tetrahedron: Asymmetry, 2000, 11, 2781-2791.	1.8	72
146	An anti-inflammatory ditriazine inhibiting leukocyte functions and expression of inducible nitric oxide synthase and cyclo-oxygenase-2. European Journal of Pharmacology, 2000, 397, 207-217.	1.7	16
147	Assignment of the Absolute Configuration of α-Chiral Carboxylic Acids by1H NMR Spectroscopy. Journal of Organic Chemistry, 2000, 65, 2658-2666.	1.7	54
148	Effects of some isoxazolpyrimidine derivatives on nitric oxide and eicosanoid biosynthesis. Life Sciences, 2000, 66, PL125-PL131.	2.0	8
149	Absolute Configuration of 1,n-Diols by NMR:  The Importance of the Combined Anisotropic Effects in Bis-Arylmethoxyacetates. Organic Letters, 2000, 2, 3261-3264.	2.4	55
150	Triterpene Glycosides from the Far Eastern Sea CucumberPentamera calcigerall:Â Disulfated Glycosides. Journal of Natural Products, 2000, 63, 1349-1355.	1.5	29
151	Triterpene Glycosides from the Far-Eastern Sea CucumberPentamera calcigera.1. Monosulfated Glycosides and Cytotoxicity of Their Unsulfated Derivatives. Journal of Natural Products, 2000, 63, 65-71.	1.5	44
152	The [4 + 2] Addition of Singlet Oxygen to Thebaine:Â New Access to Highly Functionalized Morphine Derivatives via Opioid Endoperoxides. Journal of Organic Chemistry, 2000, 65, 4671-4678.	1.7	23
153	The Occurrence of the Human GlycoconjugateC2-α-d-Mannosylpyranosyl-l-tryptophan in Marine Ascidians. Organic Letters, 2000, 2, 2765-2767.	2.4	38
154	Hemolytic Polar Steroidal Constituents of the StarfishAphelasteriasjaponica. Journal of Natural Products, 2000, 63, 1178-1181.	1.5	44
155	Agrochelin, a new cytotoxic alkaloid from the marine bacteria Agrobacterium sp Tetrahedron Letters, 1999, 40, 6841-6844.	0.7	25
156	9-Anthrylmethoxyacetic acid esterification shiftsâ€"Correlation with the absolute stereochemistry of secondary alcohols. Tetrahedron, 1999, 55, 569-584.	1.0	43
157	Monitoring the solid-phase synthesis of depsides and depsipeptides. A color test for hydroxyl groups linked to a resin Tetrahedron, 1999, 55, 14807-14812.	1.0	50
158	Solid phase synthesis of depsides and depsipeptides. Tetrahedron Letters, 1999, 40, 1203-1206.	0.7	18
159	Synthesis and Pharmacological Evaluation of Some 8-Cyanopyrido[3 ,2 :4,5]thieno[3,2-d]triazine Derivatives as Inhibitors of Nitric Oxide and Eicosanoid Biosynthesis. Journal of Medicinal Chemistry, 1999, 42, 4720-4724.	2.9	16
160	A General Methodology for Automated Solid-Phase Synthesis of Depsides and Depsipeptides. Preparation of a Valinomycin Analogueâ€. Journal of Organic Chemistry, 1999, 64, 8063-8075.	1.7	72
161	Boc-Phenylglycine: The Reagent of Choice for the Assignment of the Absolute Configuration of α-Chiral Primary Amines by1H NMR Spectroscopy. Journal of Organic Chemistry, 1999, 64, 4669-4675.	1.7	59
162	Complexation with Barium(II) Allows the Inference of the Absolute Configuration of Primary Amines by NMR. Journal of the American Chemical Society, 1999, 121, 9724-9725.	6.6	44

#	Article	IF	CITATIONS
163	Are Both the (R)-and the (S)-MPA Esters Really Needed for the Assignment of the Absolute Configuration of Secondary Alcohols by NMR? The Use of a Single Derivative. Journal of the American Chemical Society, 1998, 120, 877-882.	6.6	100
164	Synthesis and antiallergic activity of pyridothienopyrimidines. Bioorganic and Medicinal Chemistry, 1998, 6, 1911-1925.	1.4	44
165	Synthesis, antihistaminic and cytotoxic activity of pyridothieno- and pyridodithienotriazines. European Journal of Medicinal Chemistry, 1998, 33, 887-897.	2.6	36
166	Studies on the interaction between 1,2,3,4-tetrahydro- \hat{l}^2 -carboline and cigarette smoke: a potential mechanism of neuroprotection for Parkinson's disease. Brain Research, 1998, 802, 155-162.	1.1	26
167	The unusual presence of hydroxylated furanosesquiterpenes in the deep ocean tunicate Ritterella rete. Chemical interconversions and absolute stereochemistry. Tetrahedron, 1998, 54, 5385-5406.	1.0	15
168	Minalemines A-F: Sulfamic acid peptide guanidine derivatives isolated from the marine tunicate Didemnun rodriguesi. Tetrahedron, 1998, 54, 7539-7550.	1.0	26
169	Conformational Analysis of l-(Alkoxymethyl)-5(R)-methyl-2-pyrrolidinone Derivatives. Determination of the Absolute Stereochemistry of Alcohols. Journal of Organic Chemistry, 1998, 63, 8682-8688.	1.7	10
170	Assignment of the Absolute Configuration of β-Chiral Primary Alcohols by NMR: Scope and Limitations. Journal of the American Chemical Society, 1998, 120, 4741-4751.	6.6	56
171	Frondoside C, a new nonholostane triterpene glycoside from the sea cucumber <i>Cucumaria frondosa</i> : structure and cytoto×icity of its desulfated derivative. Canadian Journal of Chemistry, 1998, 76, 137-141.	0.6	23
172	Koreoside A, a New Nonholostane Triterpene Glycoside from the Sea CucumberCucumariakoraiensis. Journal of Natural Products, 1997, 60, 808-810.	1.5	34
173	Choosing the Right Reagent for the Determination of the Absolute Configuration of Amines by NMR:Â MTPA or MPA?â€. Journal of Organic Chemistry, 1997, 62, 7569-7574.	1.7	70
174	Structure of Eximisoside A, a Novel Triterpene Glycoside from the Far-Eastern Sea CucumberPsoluseximius. Journal of Natural Products, 1997, 60, 817-819.	1.5	27
175	Boussingoside E, a New Triterpenoid Saponin from the Tubers of Boussingaultia baselloides. Journal of Natural Products, 1997, 60, 17-19.	1.5	7
176	Determining factors in the assignment of the absolute configuration of alcohols by NMR. The use of anisotropic effects on remote positions. Tetrahedron, 1997, 53, 8541-8564.	1.0	48
177	The use of ethyl 2-(9-anthryl)-2-hydroxyacetate for assignment of the absolute configuration of carboxylic acids by 1H NMR. Tetrahedron: Asymmetry, 1997, 8, 1015-1018.	1.8	22
178	Asymmetric synthesis of the \hat{l}^2 -amino acid methyl ester derivative of onchidin: (2S,3S)-methyl-3-amino-2-methyl-7-octynoate and its enantiomer. Tetrahedron: Asymmetry, 1997, 8, 1847-1854.	1.8	13
179	Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]-pyrimidines. Bioorganic and Medicinal Chemistry, 1997, 5, 1543-1553.	1.4	113
180	Absolute Configuration of an Intermediate in the Asymmetric Synthesis of Natural \hat{l}^2 -Hydroxy and \hat{l}^2 -Amino Acids. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 1312-1314.	0.4	1

#	Article	IF	Citations
181	Cytotoxic Triterpene Glycosides from Far-Eastern Sea Cucumbers Belonging to the GenusCucumaria. Liebigs Annalen, 1997, 1997, 2351-2356.	0.8	22
182	MTPA vs MPA in the Determination of the Absolute Configuration of Chiral Alcohols by 1H NMR. Journal of Organic Chemistry, 1996, 61, 8569-8577.	1.7	178
183	New Amino Acid Derivatives from the Marine Ascidian Leptoclinides dubius. Journal of Natural Products, 1996, 59, 782-785.	1.5	32
184	Onchidin B: $\hat{a}\in \infty$ A New Cyclodepsipeptide from the Mollusc Onchidium sp Journal of the American Chemical Society, 1996, 118, 11635-11643.	6.6	52
185	Interaction of 1,2,3,4-Tetrahydroisoquinoline with Some Components of Cigarette Smoke: Potential Implications for Parkinson's Disease. Biochemical and Biophysical Research Communications, 1996, 222, 607-611.	1.0	14
186	Determination of the absolute configuration and enantiomeric purity of chiral primary alcohols by 1H NMR of 9-anthrylmethoxyacetates. Tetrahedron: Asymmetry, 1996, 7, 2195-2198.	1.8	26
187	Isonitenin and Acetylhomoagmatine new Metabolites from the SpongesSpongia OfficinalisandCliona celatacollected at the Galician Coast (NW Spain). Natural Product Research, 1996, 8, 15-23.	0.4	13
188	Determination of the absolute configuration of alcohols by low temperature 1H NMR of aryl(methoxy)acetates. Tetrahedron: Asymmetry, 1995, 6, 107-110.	1.8	41
189	The conformation of aldisin and analogues. A potential model for expanded nucleosides. Tetrahedron, 1995, 51, 1301-1310.	1.0	3
190	Caledonin, a natural peptide bolaphile with ZnII and CuI complexing properties from the tunicate Didemnun rodriguesi. Tetrahedron Letters, 1995, 36, 8853-8856.	0.7	24
191	Determination of the Absolute Stereochemistry of Chiral Amines by 1H NMR of Arylmethoxyacetic Acid Amides: The Conformational Model. Journal of Organic Chemistry, 1995, 60, 1538-1545.	1.7	61
192	Conformational Structure and Dynamics of Arylmethoxyacetates: DNMR Spectroscopy and Aromatic Shielding Effect. Journal of Organic Chemistry, 1995, 60, 504-515.	1.7	115
193	Euryspongiols: Ten new highly hydroxylated 9,11-secosteroids with antihistaminic activity from the sponge euryspongia sp. Stereochemistry and reduction Tetrahedron, 1994, 50, 3813-3828.	1.0	40
194	New chirality recognizing reagents for the determination of absolute stereochemistry and enantiomeric purity by NMR. Tetrahedron Letters, 1994, 35, 2921-2924.	0.7	68
195	Photooxidation of thebaine. A route to 14-hydroxymorphinones and hydrodibenzofuran analogs of methadone. Tetrahedron Letters, 1994, 35, 5727-5730.	0.7	11
196	Onchidin: a cytotoxic depsipeptide with C2 symmetry from a marine mollusc. Tetrahedron Letters, 1994, 35, 9239-9242.	0.7	49
197	Phenylethanoid glycosides in plants: structure and biological activity. Natural Product Reports, 1994, 11, 591-606.	5.2	203
198	Dactyltronic Acids from the Sponge Dactylospongia elegans. Journal of Natural Products, 1994, 57, 992-996.	1.5	20

#	Article	IF	CITATIONS
199	Antarctic Marine Metabolites: New Polyhydroxylated Steroidal Glycosides from the Starfish <i>Odontaster validus</i> . Liebigs Annalen Der Chemie, 1993, 1993, 1257-1262.	0.8	7
200	Villagorgin A and B. New type of indole alkaloids with acetylcholine antagonist activity from the gorgonian Villagorgia rubra. Tetrahedron Letters, 1993, 34, 7773-7776.	0.7	27
201	Helianthoside from Heliaster helianthus, an asterosaponin with a C3′-sulphated pyranose. Canadian Journal of Chemistry, 1993, 71, 1147-1151.	0.6	10
202	The Analgesic Activity ofHedyosmum bonplandianum: Flavonoid Glycosides. Planta Medica, 1993, 59, 26-27.	0.7	25
203	The structures and stereochemistry of cytotoxic sesquiterpene quinones from dactylospongia elegans. Tetrahedron, 1992, 48, 6667-6680.	1.0	94
204	Santiagoside, the first asterosaponin from an antarctic starfish (Neosmilaster georgianus) Tetrahedron, 1992, 48, 6739-6746.	1.0	21
205	Sarasinosides D-G: four new triterpenoid saponins from the sponge asteropus sarasinosum. Tetrahedron, 1992, 48, 8685-8696.	1.0	37
206	Malaysiatin, the first cyclic heptapeptide from a marine sponge. Tetrahedron Letters, 1992, 33, 6017-6020.	0.7	14
207	New marine cytotoxic bispyrones. Absolute stereochemistry of onchitriols I and II. Tetrahedron Letters, 1992, 33, 1089-1092.	0.7	29
208	The natural polypropionate-derived esters of the mollusk Onchidium sp. Journal of Organic Chemistry, 1992, 57, 4624-4632.	1.7	53
209	Boussingoside D1, a new triterpenoid saponin from Boussingaultia baselloides. Liebigs Annalen Der Chemie, 1991, 1991, 291-293.	0.8	5
210	Holothurinosides: New antitumour non sulphated triterpenoid glycosides from the sea cucumber holothuria forskalii Tetrahedron, 1991, 47, 4753-4762.	1.0	71
211	Conformation of zearalenone in solution: A vicinal coupling constant and molecular mechanics study. Magnetic Resonance in Chemistry, 1990, 28, 665-667.	1.1	4
212	Zanthoxylum coriaceum alkaloids related to bishordeninyl terpenes. Phytochemistry, 1990, 29, 2315-2319.	1.4	9
213	Lignans and Other Constituents from South and Central AmericanZanthoxylumSpecies. Planta Medica, 1990, 56, 89-91.	0.7	21
214	Pharmacological Effects of Three Phenylpropanoid Glycosides fromMussatia. Planta Medica, 1990, 56, 24-26.	0.7	34
215	Hypoglucaemic triterpenoid saponins from Boussingaultiabaselloides. Canadian Journal of Chemistry, 1990, 68, 2039-2044.	0.6	27
216	Occurrence of corn mycotoxins in Galicia (northwest Spain). Journal of Agricultural and Food Chemistry, 1990, 38, 1004-1006.	2.4	26

#	Article	IF	CITATIONS
217	A New Bishordeninyl Terpene Alkaloid from Zanthoxylum chiriquinum. Journal of Natural Products, 1990, 53, 459-461.	1.5	4
218	The halogenated monoterpenes of Aplysia punctata. A comparative study. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1989, 92, 99-101.	0.2	10
219	Acetylated mycotoxins from Fusarium graminearum. Phytochemistry, 1989, 28, 83-85.	1.4	18
220	A chromone from Zanthoxylum species. Phytochemistry, 1989, 28, 1992-1993.	1.4	18
221	Triterpene glycosides from Mussatia species. Phytochemistry, 1989, 28, 2773-2776.	1.4	14
222	The solution structure of alfileramine. Nuclear magnetic resonance spectroscopy and molecular mechanics study. Tetrahedron, 1989, 45, 7477-7484.	1.0	2
223	The Dietary Origin of Epidioxysteroids in Actinia equina. A Carbon-14 Incorporation Experiment. Journal of Natural Products, 1989, 52, 619-622.	1.5	14
224	Phenylpropanoid Glycosides from Mussatia hyacinthina. Journal of Natural Products, 1989, 52, 408-410.	1.5	8
225	New Total Synthesis of Patulin. Heterocycles, 1989, 29, 181.	0.4	14
226	Alkaloid N-oxides of amaryllidaceae. Phytochemistry, 1988, 27, 3285-3287.	1.4	39
227	Five phenylpropanoid glycosides from Mussatia. Phytochemistry, 1988, 27, 2947-2951.	1.4	12
228	Ring C homologation of aporphines. A new synthesis of homoaporphines. Journal of Organic Chemistry, 1987, 52, 3579-3584.	1.7	15
229	Three phenylpropanoid glycosides from Mussatia. Phytochemistry, 1987, 26, 1805-1810.	1.4	19
230	Complete structural analysis of cyclic polyhalogenated monoterpenes. A force field 2-dimensional NMR study. Journal of Organic Chemistry, 1986, 51, 4970-4973.	1.7	4
231	Epidioxy Sterols from the Tunicates Dendrodoa grossularia and Ascidiella aspersa and the Gastropoda Aplysia depilans and Aplysia punctata. Journal of Natural Products, 1986, 49, 905-909.	1.5	26
232	The reaction of dichlorocarbene with tertiary carboxamides. Tetrahedron, 1986, 42, 649-653.	1.0	6
233	STRUCTURAL ELUCIDATION OF MARINE HALOGENATED MONOTERPENES BY 2D-NMR AND NOE DIFFERENCE SPECTROSCOPY. A STEREOCHEMICAL CORRECTION. Chemistry Letters, 1985, 14, 697-700.	0.7	6
234	THE OXIDATION OF HYDROXYLAMINE BY FREMY'S SALT. PREPARATION OFN-NITROSAMINES AND TETRAZEN Chemistry Letters, 1985, 14, 623-626.	ES ₇	8

#	Article	IF	CITATIONS
235	Addition of dichlorocarbene to aporphinoids: a new route to homoaporphines. Tetrahedron Letters, 1985, 26, 1561-1564.	0.7	8
236	The reaction of dichlorocarbene with \hat{l}^2 -ethanolamines stereospecific synthesis of epoxides. Tetrahedron Letters, 1984, 25, 1205-1208.	0.7	19
237	Deoxygenation of 1,4-endoperoxides to 1,3-dienes by low-valent titanium. Journal of the Chemical Society Chemical Communications, 1984 , .	2.0	3
238	Halogenated Monoterpenes from Plocamium coccineum of Northwest Spain. Journal of Natural Products, 1984, 47, 724-726.	1.5	14
239	Fremy's salt (potassium nitrosodisulphonate): a nitrosating reagent for amines. Journal of the Chemical Society Chemical Communications, 1983, , 301-302.	2.0	40
240	The Quaterization of cis and trans 1-Hydroxyquinolizidine. Heterocycles, 1983, 20, 1239.	0.4	4
241	Fremy's salt oxidation of benzylamines. An oxidative deamination reaction. Tetrahedron, 1982, 38, 1569-1570.	1.0	13
242	On the Structure of Cataline. Heterocycles, 1982, 19, 1591.	0.4	3
243	13C NMR Chemical shifts in bicyclo[2.2.2]octanes—iii. Tetrahedron, 1978, 34, 2039-2043.	1.0	5
244	Metal hydride reduction of bicyclo[2.2.2]octa-2-ones. Preparation and stereochemistry of 5-substituted bicyclo[2.2.2]octan-2-ols. Journal of Organic Chemistry, 1977, 42, 368-369.	1.7	8
245	A Novel Synthesis of Aporphine and Dehydroaporphine C7-C7' Dimers. Heterocycles, 1977, 6, 677.	0.4	8
246	Carbon-13 chemical shifts in bicyclo[2.2.2]octanes. Journal of Organic Chemistry, 1976, 41, 465-469.	1.7	20