
Alireza Shaabani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6364993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel sucrose derivative as a thermally stable inhibitor for mild steel corrosion in 15% HCl medium: An experimental and computational study. Chemical Engineering Journal, 2022, 446, 136938.	12.7	66
2	Exploration of Sunflower Oil As a Renewable Biomass Source to Develop Scalable and Highly Effective Corrosion Inhibitors in a 15% HCl Medium at High Temperatures. ACS Applied Materials & Interfaces, 2021, 13, 3119-3138.	8.0	46
3	Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Scientific Reports, 2021, 11, 7060.	3.3	37
4	Self-healable conductive polyurethane with the body temperatureâ€responsive shape memory for bone tissue engineering. Chemical Engineering Journal, 2021, 411, 128449.	12.7	50
5	Synthesis of shape memory electroconductive polyurethane with self-healing capability as an intelligent biomedical scaffold for bone tissue engineering. Polymer, 2021, 223, 123694.	3.8	19
6	Preparation of chitosan biguanidine/PANI-containing self-healing semi-conductive waterborne scaffolds for bone tissue engineering. Carbohydrate Polymers, 2021, 264, 118045.	10.2	31
7	Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF carrier for osteogenesis of dental pulp stem cells. Carbohydrate Polymers, 2021, 273, 118589.	10.2	47
8	Preparation of novel chitosan derivative nanofibers for prevention of breast cancer recurrence. European Polymer Journal, 2020, 123, 109421.	5.4	30
9	Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydrate Polymers, 2020, 230, 115707.	10.2	68
10	A theoretical and experimental study of castor oil-based inhibitor for corrosion inhibition of mild steel in acidic medium at elevated temperatures. Corrosion Science, 2020, 175, 108871.	6.6	161
11	Sulfonated chitosan as green and high cloud point kinetic methane hydrate and corrosion inhibitor: Experimental and theoretical studies. Carbohydrate Polymers, 2020, 236, 116035.	10.2	56
12	Inhibition Performance of Chitosan- <i>graft</i> -Polyacrylamide as an Environmentally Friendly and High-Cloud-Point Inhibitor of Nucleation and Growth of Methane Hydrate. Crystal Growth and Design, 2020, 20, 1771-1778.	3.0	24
13	A Non-Enzymatic Biosensor Based on Pd Decorated Reduced Graphene Oxide Poly (2-anilinoethanol) Nanocomposite and Its Application for the Determination of Dopamine. Journal of the Electrochemical Society, 2018, 165, B150-B159.	2.9	15
14	Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer, 2018, 142, 244-255.	3.8	64
15	Synthesis, Characterization and Electrospinning of Novel Chitosan Derivative for Tissue Engineering Applications. , 2018, , .		0
16	Biocompatible electrospinning chitosan nanofibers: A novel delivery system with superior local cancer therapy. Carbohydrate Polymers, 2017, 159, 1-10.	10.2	109
17	Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer, 2016, 101, 151-157.	3.8	56