
Christopher G. Dowson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6364904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant peptidoglycan precursor biosynthesis: Conservation between moss chloroplasts and Gram-negative bacteria. Plant Physiology, 2022, 190, 165-179.	4.8	6
2	To Push or To Pull? In a Post-COVID World, Supporting and Incentivizing Antimicrobial Drug Development Must Become a Governmental Priority. ACS Infectious Diseases, 2021, 7, 2029-2042.	3.8	30
3	Structure-based modeling and dynamics of MurM, a Streptococcus pneumoniae penicillin resistance determinant present at the cytoplasmic membrane. Structure, 2021, 29, 731-742.e6.	3.3	7
4	A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in <i>Streptococcus pneumoniae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
5	There is no market for new antibiotics:Âthis allows an open approach toÂresearchÂandÂdevelopment. Wellcome Open Research, 2021, 6, 146.	1.8	27
6	High-Throughput Crystallography Reveals Boron-Containing Inhibitors of a Penicillin-Binding Protein with Di- and Tricovalent Binding Modes. Journal of Medicinal Chemistry, 2021, 64, 11379-11394.	6.4	15
7	Synthetic Sansanmycin Analogues as Potent <i>Mycobacterium tuberculosis</i> Translocase I Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 17326-17345.	6.4	8
8	Demonstration of the utility of DOS-derived fragment libraries for rapid hit derivatisation in a multidirectional fashion. Chemical Science, 2020, 11, 10792-10801.	7.4	11
9	Metal complexes as a promising source for new antibiotics. Chemical Science, 2020, 11, 2627-2639.	7.4	290
10	Substrate and Stereochemical Control of Peptidoglycan Cross-Linking by Transpeptidation by Escherichia coliPBP1B. Journal of the American Chemical Society, 2020, 142, 5034-5048.	13.7	21
11	Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin. Nature Communications, 2020, 11, 1892.	12.8	28
12	Investigating Bacteriophages Targeting the Opportunistic Pathogen Acinetobacter baumannii. Antibiotics, 2020, 9, 200.	3.7	26
13	Novel and Improved Crystal Structures of H. influenzae, E. coli and P. aeruginosa Penicillin-Binding Protein 3 (PBP3) and N. gonorrhoeae PBP2: Toward a Better Understanding of β-Lactam Target-Mediated Resistance. Journal of Molecular Biology, 2019, 431, 3501-3519.	4.2	31
14	The Molecular Basis of Antibiotic Action and Resistance. Journal of Molecular Biology, 2019, 431, 3367-3369.	4.2	4
15	Structure-Guided Enhancement of Selectivity of Chemical Probe Inhibitors Targeting Bacterial Seryl-tRNA Synthetase. Journal of Medicinal Chemistry, 2019, 62, 9703-9717.	6.4	5
16	Detection of "Hidden―Antimicrobial Drug Resistance. ACS Infectious Diseases, 2019, 5, 1252-1263.	3.8	10
17	Evaluation of a Library of FDA-Approved Drugs for Their Ability To Potentiate Antibiotics against Multidrug-Resistant Gram-Negative Pathogens. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	14
18	Bacterial Lipid II Analogs: Novel In Vitro Substrates for Mammalian Oligosaccharyl Diphosphodolichol Diphosphatase (DLODP) Activities. Molecules, 2019, 24, 2135.	3.8	1

#	Article	IF	CITATIONS
19	Profiling interactions of vaborbactam with metallo-β-lactamases. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1981-1984.	2.2	34
20	Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening. Journal of the American Chemical Society, 2019, 141, 8951-8968.	13.7	213
21	Meeting the discovery challenge of drug-resistant infections: progress and focusing resources. Drug Discovery Today, 2019, 24, 452-461.	6.4	22
22	In silico identification, synthesis and biological evaluation of novel tetrazole inhibitors of MurB. Chemical Biology and Drug Design, 2018, 91, 1101-1112.	3.2	10
23	Structural studies suggest aggregation as one of the modes of action for teixobactin. Chemical Science, 2018, 9, 8850-8859.	7.4	24
24	The role of the jaw subdomain of peptidoglycan glycosyltransferases for lipid II polymerization. Cell Surface, 2018, 2, 54-66.	3.0	8
25	Biguanide Iridium(III) Complexes with Potent Antimicrobial Activity. Journal of Medicinal Chemistry, 2018, 61, 7330-7344.	6.4	79
26	Touching proteins with virtual bare hands. Journal of Computer-Aided Molecular Design, 2018, 32, 703-709.	2.9	27
27	Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nature Communications, 2017, 8, 14414.	12.8	43
28	Diaryltriazenes as antibacterial agents against methicillin resistant Staphylococcus aureus (MRSA) and Mycobacterium smegmatis. European Journal of Medicinal Chemistry, 2017, 127, 223-234.	5.5	13
29	Sequence Control as a Powerful Tool for Improving the Selectivity of Antimicrobial Polymers. ACS Applied Materials & amp; Interfaces, 2017, 9, 40117-40126.	8.0	83
30	Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nature Communications, 2017, 8, 1939.	12.8	59
31	Combatting AMR: photoactivatable ruthenium(<scp>ii</scp>)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chemical Science, 2017, 8, 395-404.	7.4	99
32	In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA). PLoS Pathogens, 2017, 13, e1006667.	4.7	35
33	DNA methylation in fibrosis. European Journal of Cell Biology, 2016, 95, 323-330.	3.6	27
34	Whole-Genome Sequence of <i>Corynebacterium pseudotuberculosis</i> 262 Biovar <i>equi</i> Isolated from Cow Milk. Genome Announcements, 2016, 4, .	0.8	3
35	Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase. Scientific Reports, 2016, 6, 23191.	3.3	10
36	Concordance in diabetic foot ulceration: a cross-sectional study of agreement between wound swabbing and tissue sampling in infected ulcers. Health Technology Assessment, 2016, 20, 1-176.	2.8	20

#	Article	IF	CITATIONS
37	Patient experience and satisfaction with Onabotulinumtoxin A for refractory overactive bladder. BJU International, 2015, 116, 443-449.	2.5	20
38	CODIFI (Concordance in Diabetic Foot Infection): Agreement in reported presence of likely pathogens in swabs and tissue samples from infected diabetic foot ulcers. Journal of Foot and Ankle Research, 2015, 8, .	1.9	0
39	Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. Nature Communications, 2015, 6, 7719.	12.8	34
40	Adenosine Tetraphosphoadenosine Drives a Continuous ATP-Release Assay for Aminoacyl-tRNA Synthetases and Other Adenylate-Forming Enzymes. ACS Chemical Biology, 2013, 8, 2157-2163.	3.4	10
41	Oxidation of Tertiary Amine-Derivatized Surfaces To Control Protein Adhesion. Langmuir, 2013, 29, 2961-2970.	3.5	12
42	Precision transducer for Fluorescence-Based Immunoassays. , 2013, , .		0
43	Specificity Determinants for Lysine Incorporation in Staphylococcus aureus Peptidoglycan as Revealed by the Structure of a MurE Enzyme Ternary Complex. Journal of Biological Chemistry, 2013, 288, 33439-33448.	3.4	33
44	Key Role for Efflux in the Preservative Susceptibility and Adaptive Resistance of Burkholderia cepacia Complex Bacteria. Antimicrobial Agents and Chemotherapy, 2013, 57, 2972-2980.	3.2	58
45	Whole-Genome Sequence of Corynebacterium pseudotuberculosis Strain Cp162, Isolated from Camel. Journal of Bacteriology, 2012, 194, 5718-5719.	2.2	10
46	Multilocus sequence types of invasive Corynebacterium diphtheriae isolated in the Rio de Janeiro urban area, Brazil. Epidemiology and Infection, 2012, 140, 617-620.	2.1	23
47	A Role for Sigma Factor σE in Corynebacterium pseudotuberculosis Resistance to Nitric Oxide/Peroxide Stress. Frontiers in Microbiology, 2012, 3, 126.	3.5	19
48	Repeated Botulinum Toxin Type A Injections for Refractory Overactive Bladder: Medium-Term Outcomes, Safety Profile, and Discontinuation Rates. European Urology, 2012, 61, 834-839.	1.9	120
49	A novel multilocus sequence typing scheme for the opportunistic pathogen Propionibacterium acnes and characterization of type I cell surface-associated antigens. Microbiology (United Kingdom), 2011, 157, 1990-2003.	1.8	131
50	The safety and efficacy of botulinum toxin-A in the management of bladder oversensitivity: a randomised double-blind placebo-controlled trial. International Journal of Clinical Practice, 2011, 65, 698-704.	1.7	32
51	Bacterial cell wall assembly: still an attractive antibacterial target. Trends in Biotechnology, 2011, 29, 167-173.	9.3	230
52	Indistinguishability and identifiability of kinetic models for the MurC reaction in peptidoglycan biosynthesis. Computer Methods and Programs in Biomedicine, 2011, 104, 70-80.	4.7	7
53	A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis. BMC Microbiology, 2011, 11, 12.	3.3	52
54	Multilocus Sequence Typing Identifies Evidence for Recombination and Two Distinct Lineages of <i>Corynebacterium diphtheriae</i> . Journal of Clinical Microbiology, 2010, 48, 4177-4185.	3.9	124

#	Article	IF	CITATIONS
55	Oxidative Stress of <i>Burkholderia cenocepacia</i> Induces Insertion Sequence-Mediated Genomic Rearrangements That Interfere with Macrorestriction-Based Genotyping. Journal of Clinical Microbiology, 2010, 48, 34-40.	3.9	30
56	Repeat botulinum toxin-A injections for treatment of adult detrusor overactivity. Nature Reviews Urology, 2010, 7, 661-667.	3.8	24
57	Novel <i>Corynebacterium diphtheriae</i> in Domestic Cats. Emerging Infectious Diseases, 2010, 16, 688-691.	4.3	66
58	Infection With Transmissible Strains of Pseudomonas aeruginosa and Clinical Outcomes in Adults With Cystic Fibrosis. JAMA - Journal of the American Medical Association, 2010, 304, 2145.	7.4	142
59	Repeated Injections of Botulinum Toxin-A for Idiopathic Detrusor Overactivity. Urology, 2010, 75, 552-558.	1.0	69
60	Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 102-111.	1.7	280
61	Cross-Sectional and Longitudinal Multilocus Sequence Typing of <i>Pseudomonas aeruginosa</i> in Cystic Fibrosis Sputum Samples. Journal of Clinical Microbiology, 2009, 47, 3444-3448.	3.9	22
62	Expanded Multilocus Sequence Typing for <i>Burkholderia</i> Species. Journal of Clinical Microbiology, 2009, 47, 2607-2610.	3.9	158
63	The Genome of <i>Burkholderia cenocepacia</i> J2315, an Epidemic Pathogen of Cystic Fibrosis Patients. Journal of Bacteriology, 2009, 191, 261-277.	2.2	329
64	Biocide susceptibility of the Burkholderia cepacia complex. Journal of Antimicrobial Chemotherapy, 2009, 63, 502-510.	3.0	85
65	Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. BMC Genomics, 2009, 10, 54.	2.8	101
66	Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiology, 2009, 9, 223.	3.3	165
67	Inhibition of tRNA-dependent ligase MurM from Streptococcus pneumoniae by phosphonate and sulfonamide inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 3443-3455.	3.0	13
68	Larval therapy for leg ulcers (VenUS II): randomised controlled trial. BMJ: British Medical Journal, 2009, 338, b773-b773.	2.3	193
69	Mutational Analysis of the Substrate Specificity of <i>Escherichia coli</i> Penicillin Binding Protein 4. Biochemistry, 2009, 48, 2675-2683.	2.5	35
70	Pseudomonas aeruginosa MurE amide ligase: enzyme kinetics and peptide inhibitor. Biochemical Journal, 2009, 421, 263-272.	3.7	25
71	Indistinguishability and identifiability of kinetic models for the Mur C reaction in peptidoglycan biosynthesis* *EPSRC funded project Indistinguishability analysis for model discrimination in Systems Biology: A Feasibility Study applied to Bacterial Peptidoglycan Biosynthesis (EP/E057535/1) IFAC Postprint Volumes IPPV / International Federation of Automatic Control. 2009. 42. 103-108.	0.4	0
72	Rapid Evolution of Virulence and Drug Resistance in the Emerging Zoonotic Pathogen Streptococcus suis. PLoS ONE, 2009, 4, e6072.	2.5	214

#	Article	IF	CITATIONS
73	VenUS II: a randomised controlled trial of larval therapy in the management of leg ulcers. Health Technology Assessment, 2009, 13, 1-182, iii-iv.	2.8	64
74	EFFICACY AND COMPLICATIONS OF INTRADETRUSOR INJECTION WITH BOTULINUM TOXIN A IN PATIENTS WITH REFRACTORY IDIOPATHIC DETRUSOR OVERACTIVITY. BJU International, 2008, 101, 515-516.	2.5	2
75	Bayesian modeling of recombination events in bacterial populations. BMC Bioinformatics, 2008, 9, 421.	2.6	26
76	Diversity of the parB and repA genes of the Burkholderia cepacia complex and their utility for rapid identification of Burkholderia cenocepacia. BMC Microbiology, 2008, 8, 44.	3.3	15
77	Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. Journal of Applied Microbiology, 2008, 104, 1539-1551.	3.1	336
78	Association between Hypermutator Phenotype, Clinical Variables, Mucoid Phenotype, and Antimicrobial Resistance in Pseudomonas aeruginosa. Journal of Clinical Microbiology, 2008, 46, 3491-3493.	3.9	57
79	Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1580-1590.	1.7	218
80	Kinetic Characterization of Lipid II-Ala:Alanyl-tRNA Ligase (MurN) from Streptococcus pneumoniae using Semisynthetic Aminoacyl-lipid II Substrates. Journal of Biological Chemistry, 2008, 283, 34571-34579.	3.4	14
81	Elucidating Global Epidemiology of <i>Burkholderia multivorans</i> in Cases of Cystic Fibrosis by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2008, 46, 290-295.	3.9	57
82	Characterization of tRNA-dependent Peptide Bond Formation by MurM in the Synthesis of Streptococcus pneumoniae Peptidoglycan. Journal of Biological Chemistry, 2008, 283, 6402-6417.	3.4	70
83	Nod1 Signaling Overcomes Resistance of S. pneumoniae to Opsonophagocytic Killing. PLoS Pathogens, 2007, 3, e118.	4.7	72
84	Environmental <i>Burkholderia cepacia</i> Complex Isolates from Human Infections. Emerging Infectious Diseases, 2007, 13, 458-461.	4.3	112
85	Reliability of multilocus sequence typing of the Burkholderia cepacia complex in cystic fibrosis. Journal of Cystic Fibrosis, 2007, 6, 215-219.	0.7	11
86	Adenosine phosphonate inhibitors of lipid II: Alanyl tRNA ligase MurM from Streptococcus pneumoniae. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4654-4656.	2.2	15
87	InvestigatingBurkholderia cepaciacomplex populations recovered from Italian maize rhizosphere by multilocus sequence typing. Environmental Microbiology, 2007, 9, 1632-1639.	3.8	35
88	Evolution and Epidemiology of Antibiotic-Resistant Pneumococci. , 2007, , 229-254.		0
89	Fluorescent reagents for in vitro studies of lipid-linked steps of bacterial peptidoglycan biosynthesis: derivatives of UDPMurNAc-pentapeptide containing d-cysteine at position 4 or 5. Molecular BioSystems, 2006, 2, 484.	2.9	32
90	Multilocus Sequence Typing Breathes Life into a Microbial Metagenome. PLoS ONE, 2006, 1, e17.	2.5	61

#	Article	IF	CITATIONS
91	Distribution of epidemic antibiotic-resistant pneumococcal clones in Scottish pneumococcal isolates analysed by multilocus sequence typing. Microbiology (United Kingdom), 2006, 152, 361-365.	1.8	8
92	Proinflammatory activation of Toll-like receptor-2 during exposure of penicillin-resistant Streptococcus pneumoniae to Â-lactam antibiotics. Journal of Antimicrobial Chemotherapy, 2006, 59, 35-42.	3.0	3
93	IFN-Î ³ Enhances Production of Nitric Oxide from Macrophages via a Mechanism That Depends on Nucleotide Oligomerization Domain-2. Journal of Immunology, 2006, 176, 4804-4810.	0.8	72
94	Incremental Increase in Fitness Cost with Increased Î²â€Łactam Resistance in Pneumococci Evaluated by Competition in an Infant Rat Nasal Colonization Model. Journal of Infectious Diseases, 2006, 193, 1296-1303.	4.0	63
95	Distribution and Genetic Diversity of the ABC Transporter Lipoproteins PiuA and PiaA within Streptococcus pneumoniae and Related Streptococci. Journal of Bacteriology, 2006, 188, 1031-1038.	2.2	47
96	PiuA and PiaA, iron uptake lipoproteins ofStreptococcus pneumoniae, elicit serotype independent antibody responses following human pneumococcal septicaemia. FEMS Immunology and Medical Microbiology, 2005, 43, 73-80.	2.7	24
97	Data reduction in headspace analysis of blood and urine samples for robust bacterial identification. Computer Methods and Programs in Biomedicine, 2005, 79, 259-271.	4.7	15
98	Commercial Mushrooms and Bean Sprouts Are a Source of Pseudomonas aeruginosa. Journal of Clinical Microbiology, 2005, 43, 5830-5831.	3.9	13
99	Multilocus Sequence Typing of Staphylococcus aureus Isolated from High-Somatic-Cell-Count Cows and the Environment of an Organic Dairy Farm in the United Kingdom. Journal of Clinical Microbiology, 2005, 43, 4731-4736.	3.9	39
100	Multilocus Sequence Typing of Intercontinental Bovine Staphylococcus aureus Isolates. Journal of Clinical Microbiology, 2005, 43, 4737-4743.	3.9	158
101	NanA, a Neuraminidase from Streptococcus pneumoniae , Shows High Levels of Sequence Diversity, at Least in Part through Recombination with Streptococcus oralis. Journal of Bacteriology, 2005, 187, 5376-5386.	2.2	55
102	Multilocus Sequence Typing Scheme That Provides Both Species and Strain Differentiation for the Burkholderia cepacia Complex. Journal of Clinical Microbiology, 2005, 43, 4665-4673.	3.9	193
103	Distribution, Genetic Diversity, and Variable Expression of the Gene Encoding Hyaluronate Lyase within the Streptococcus suis Population. Journal of Bacteriology, 2004, 186, 4740-4747.	2.2	22
104	Development of a Multilocus Sequence Typing Scheme for the Opportunistic Pathogen Pseudomonas aeruginosa. Journal of Clinical Microbiology, 2004, 42, 5644-5649.	3.9	450
105	Genetic Analysis of Diverse Disease-Causing Pneumococci Indicates High Levels of Diversity within Serotypes and Capsule Switching. Journal of Clinical Microbiology, 2004, 42, 5681-5688.	3.9	65
106	Expression, purification, crystallization and preliminary characterization of uridine 5′-diphospho-N-acetylmuramoylL-alanyl-D-glutamate:lysine ligase (MurE) fromStreptococcus pneumoniae110K/70. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 359-361.	2.5	6
107	Automated Pneumococcal MLST Using Liquid-Handling Robotics and a Capillary DNA Sequencer. Molecular Biotechnology, 2003, 24, 303-308.	2.4	32
108	Spontaneous sequence duplications within capsule genes cap8E and tts control phase variation in Streptococcus pneumoniae serotypes 8 and 37. Microbiology (United Kingdom), 2003, 149, 497-504.	1.8	67

#	Article	IF	CITATIONS
109	MultilocusSequence Typing for Comparison of Veterinary and HumanIsolates of Campylobacter jejuni. Applied and Environmental Microbiology, 2003, 69, 6370-6379.	3.1	158
110	Chemical sensor screening of blood samples: Robust analysis via data set reduction. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 289-294.	0.4	0
111	Development of a Multilocus Sequence Typing Scheme for the Pig Pathogen Streptococcus suis : Identification of Virulent Clones and Potential Capsular Serotype Exchange. Journal of Clinical Microbiology, 2002, 40, 3671-3680.	3.9	236
112	The Use of Microarray Technology for the Analysis ofStreptococcus pneumoniae. Comparative and Functional Genomics, 2002, 3, 366-368.	2.0	2
113	Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Molecular Microbiology, 2002, 42, 1223-1232.	2.5	92
114	Site-Directed Mutagenesis to Determine Structure Function Relationships in Streptococcus pneumoniae Penicillin-Binding Protein Genes. , 2001, 48, 245-264.		1
115	Evolution And Epidemiology Of Antibiotic- Resistant Pneumococci. , 2001, , .		1
116	Distribution and Genetic Diversity of Suilysin in Streptococcus suis Isolated from Different Diseases of Pigs and Characterization of the Genetic Basis of Suilysin Absence. Infection and Immunity, 2001, 69, 7572-7582.	2.2	68
117	Genetic Diversity of the tet (M) Gene in Tetracycline-Resistant Clonal Lineages of Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2000, 44, 2979-2984.	3.2	117
118	Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2000, 45, 763-770.	3.0	233
119	Genetic Relationships between Clinical Isolates of Streptococcus pneumoniae , Streptococcus oralis , and Streptococcus mitis : Characterization of "Atypical―Pneumococci and Organisms Allied to S. mitis Harboring S. pneumoniae Virulence Factor-Encoding Genes. Infection and Immunity, 2000, 68, 1374-1382.	2.2	259
120	Barriers to Genetic Exchange between Bacterial Species: Streptococcus pneumoniae Transformation. Journal of Bacteriology, 2000, 182, 1016-1023.	2.2	194
121	Pneumolysin Detection Identifies Atypical Isolates of <i>Streptococcus pneumoniae</i> . Journal of Clinical Microbiology, 2000, 38, 1309-1310.	3.9	25
122	Population biology of Streptococcus pneumoniae isolated from oropharyngeal carriage and invasive disease The GenBank accession numbers for the sequences of the trpA/B alleles determined in this study are AF157817 to AF157826 Microbiology (United Kingdom), 1999, 145, 3283-3293.	1.8	54
123	Molecular Characterization of Equine Isolates of <i>Streptococcus pneumoniae</i> : Natural Disruption of Genes Encoding the Virulence Factors Pneumolysin and Autolysin. Infection and Immunity, 1999, 67, 2776-2782.	2.2	44
124	The Autolysin-Encoding Gene (<i>lytA</i>) of <i>Streptococcus pneumoniae</i> Displays Restricted Allelic Variation despite Localized Recombination Events with Genes of Pneumococcal Bacteriophage Encoding Cell Wall Lytic Enzymes. Infection and Immunity, 1999, 67, 4551-4556.	2.2	44
125	Genetic Diversity of the Streptococcal Competence (<i>com</i>) Gene Locus. Journal of Bacteriology, 1999, 181, 3144-3154.	2.2	145

126 Î²-Lactam Resistance Mediated by Changes in Penicillin-Binding Proteins. , 1998, 15, 537-554.

1

#	Article	IF	CITATIONS
127	Molecular Evolution of Rifampicin Resistance in <i>Streptococcus pneumoniae</i> . Microbial Drug Resistance, 1998, 4, 65-70.	2.0	50
128	Horizontal gene transfer and the evolution of resistance and virulence determinants in Streptococcus. Journal of Applied Microbiology, 1997, 83, 42S-51S.	3.1	58
129	Horizontal gene transfer and the evolution of resistance and virulence determinants in Streptococcus. Society for Applied Bacteriology Symposium Series, 1997, 26, 42S-51S.	0.4	17
130	The Tetracycline Resistance Genetet(M) Exhibits Mosaic Structure. Plasmid, 1996, 35, 156-163.	1.4	78
131	Homeologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: saturation of the Hex mismatch repair system Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9052-9056.	7.1	101
132	Genetics of high level penicillin resistance in clinical isolates of <i>Streptococcus pneumoniae</i> . FEMS Microbiology Letters, 1995, 126, 299-303.	1.8	116
133	Genetics and Molecular Biology of β-Lactam-Resistant Pneumococci. Microbial Drug Resistance, 1995, 1, 29-34.	2.0	97
134	Genetic analysis of clinical isolates of Streptococcus pneumoniae with high-level resistance to expanded-spectrum cephalosporins. Antimicrobial Agents and Chemotherapy, 1995, 39, 1306-1313.	3.2	171
135	Genetics of high level penicillin resistance in clinical isolates of Streptococcus pneumoniae. FEMS Microbiology Letters, 1995, 126, 299-303.	1.8	5
136	Penicillin-binding protein 2b of Streptococcus pneumoniae in piperacillin-resistant laboratory mutants. Journal of Bacteriology, 1994, 176, 5574-5577.	2.2	41
137	Genetics of oxacillin resistance in clinical isolates of Streptococcus pneumoniae that are oxacillin resistant and penicillin susceptible. Antimicrobial Agents and Chemotherapy, 1994, 38, 49-53.	3.2	57
138	Origin and molecular epidemiologY of penicillin-binding-protein-mediated resistance to β-lactam antibiotics. Trends in Microbiology, 1994, 2, 361-366.	7.7	189
139	Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Molecular Microbiology, 1993, 9, 635-643.	2.5	264
140	Deletion analysis of the essentiality of penicillin-binding proteins 1A, 2B and 2X of <i>Streptococcus pneumoniae</i> . FEMS Microbiology Letters, 1993, 106, 171-175.	1.8	81
141	Horizontal spread of an altered penicillin-binding protein 2B gene betweenStreptococcus pneumoniaeandStreptococcus oralis. FEMS Microbiology Letters, 1993, 110, 335-339.	1.8	68
142	Deletion analysis of the essentiality of penicillin-binding proteins 1A, 2B and 2X of Streptococcus pneumoniae. FEMS Microbiology Letters, 1993, 106, 171-175.	1.8	3
143	Horizontal spread of an altered penicillin-binding protein 2B gene between Streptococcus pneumoniae and Streptococcus oralis. FEMS Microbiology Letters, 1993, 110, 335-339.	1.8	2
144	Genetics of resistance to thirdâ€generation cephalosporins in clinical isolates of <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 1992, 6, 2461-2465.	2.5	197

#	Article	IF	CITATIONS
145	Localized sex in bacteria. Nature, 1991, 349, 29-31.	27.8	436
146	Horizontal transfer of multiple penicillinâ€binding protein genes, and capsular biosynthetic genes, in natural populations of <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 1991, 5, 2255-2260.	2.5	344
147	Intercontinental Spread of a Multiresistant Clone of Serotype 23F Streptococcus pneumoniae. Journal of Infectious Diseases, 1991, 164, 302-306.	4.0	463
148	Insertion of an extra amino acid is the main cause of the low affinity of penicillin-binding protein 2 in penicillin-resistant strains of Neisseria gonorrhoeae. Molecular Microbiology, 1990, 4, 913-919.	2.5	99
149	Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 5858-5862.	7.1	205
150	Nucleotide sequence of the penicillin-binding protein 2B gene ofStreptococcus pneunwniaestrain R6. Nucleic Acids Research, 1989, 17, 7518-7518.	14.5	61
151	Spatial dynamics and interactions of the woodland fairy ring fungus, Clitocybe nebularis. New Phytologist, 1989, 111, 699-705.	7.3	59
152	Penicillin-binding protein 2 genes of non-?-lactamase-producing, penicillin-resistant strains of Neisseria gonorrhoeae. Molecular Microbiology, 1989, 3, 35-41.	2.5	69
153	Extensive re-modelling of the transpeptidase domain of penicillin-binding protein 2B of a penicillin-resistant South African isolate of Streptococcus pneumoniae. Molecular Microbiology, 1989, 3, 95-102.	2.5	176
154	Resource relationships of foraging mycelial systems of Phanerochaete velutina and Hypholoma fasciculare in soil. New Phytologist, 1989, 111, 501-509.	7.3	79
155	Development and extension of mycelial cords in soil at different temperatures and moisture contents. Mycological Research, 1989, 92, 383-391.	2.5	22
156	Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8842-8846.	7.1	411
157	Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8988-8992.	7.1	198
158	The form and outcome of mycelial interactions involving cord-forming decomposer basidiomycetes in homogeneous and heterogeneous environments. New Phytologist, 1988, 109, 423-432.	7.3	61
159	Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter I. Initial establishment. New Phytologist, 1988, 109, 335-341.	7.3	37
160	Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter II. Resource capture and persistence. New Phytologist, 1988, 109, 343-349.	7.3	59
161	Outgrowth Patterns of Mycelial Cord-forming Basidiomycetes from and between Woody Resource Units in Soil. Microbiology (United Kingdom), 1986, 132, 203-211.	1.8	14
		_	

CITATIONS

#	Article	IF	
163	Genetic Exchange in the Respiratory Tract. , 0, , 131-140.		