Laurie G Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6364545/publications.pdf Version: 2024-02-01

LAUDIE C. SMITH

#	Article	IF	CITATIONS
1	Integration of omic networks in a developmental atlas of maize. Science, 2016, 353, 814-818.	12.6	411
2	SPATIAL CONTROL OF CELL EXPANSION BY THE PLANT CYTOSKELETON. Annual Review of Cell and Developmental Biology, 2005, 21, 271-295.	9.4	287
3	Plant cell division: building walls in the right places. Nature Reviews Molecular Cell Biology, 2001, 2, 33-39.	37.0	184
4	Reconstruction of protein networks from an atlas of maize seed proteotypes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4808-17.	7.1	174
5	Arabidopsis TANGLED Identifies the Division Plane throughout Mitosis and Cytokinesis. Current Biology, 2007, 17, 1827-1836.	3.9	171
6	Cytoskeletal control of plant cell shape: getting the fine points. Current Opinion in Plant Biology, 2003, 6, 63-73.	7.1	151
7	A Small, Novel Protein Highly Conserved in Plants and Animals Promotes the Polarized Growth and Division of Maize Leaf Epidermal Cells. Current Biology, 2002, 12, 849-853.	3.9	148
8	The Tangled1 Gene Is Required for Spatial Control of Cytoskeletal Arrays Associated with Cell Division during Maize Leaf Development. Plant Cell, 1998, 10, 1875-1888.	6.6	144
9	Two Kinesins Are Involved in the Spatial Control of Cytokinesis in Arabidopsis thaliana. Current Biology, 2006, 16, 888-894.	3.9	144
10	A Receptor-Like Protein That Promotes Polarization of an Asymmetric Cell Division in Maize. Science, 2009, 323, 649-651.	12.6	133
11	Tangled1. Journal of Cell Biology, 2001, 152, 231-236.	5.2	118
12	The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize. Nature Plants, 2015, 1, 14024.	9.3	108
13	ROP GTPases Act with the Receptor-Like Protein PAN1 to Polarize Asymmetric Cell Division in Maize Â. Plant Cell, 2011, 23, 2273-2284.	6.6	106
14	Division plane control in plants: new players in the band. Trends in Cell Biology, 2009, 19, 180-188.	7.9	104
15	Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genetics and Biology, 2010, 47, 573-586.	2.1	104
16	BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development (Cambridge), 2006, 133, 1091-1100.	2.5	103
17	ACQUISITION OF IDENTITY IN THE DEVELOPING LEAF. Annual Review of Cell and Developmental Biology, 1996, 12, 257-304.	9.4	98
18	Parallel Proteomic and Phosphoproteomic Analyses of Successive Stages of Maize Leaf Development. Plant Cell, 2013, 25, 2798-2812.	6.6	94

LAURIE G SMITH

#	Article	IF	CITATIONS
19	Expression ofknotted1 marks shoot meristem formation during maize embryogenesis. Genesis, 1995, 16, 344-348.	2.1	93
20	Three Brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis. Development (Cambridge), 2003, 130, 753-762.	2.5	90
21	Roles for polarity and nuclear determinants in specifying daughter cell fates after an asymmetric cell division in the maize leaf. Current Biology, 2000, 10, 1229-1232.	3.9	85
22	Identification of PAN2 by Quantitative Proteomics as a Leucine-Rich Repeat–Receptor-Like Kinase Acting Upstream of PAN1 to Polarize Cell Division in Maize. Plant Cell, 2012, 24, 4577-4589.	6.6	82
23	Divide and conquer: cytokinesis in plant cells. Current Opinion in Plant Biology, 1999, 2, 447-453.	7.1	64
24	A High-Resolution Tissue-Specific Proteome and Phosphoproteome Atlas of Maize Primary Roots Reveals Functional Gradients along the Root Axes. Plant Physiology, 2015, 168, 233-246.	4.8	64
25	Constructing functional cuticles: analysis of relationships between cuticle lipid composition, ultrastructure and water barrier function in developing adult maize leaves. Annals of Botany, 2020, 125, 79-91.	2.9	58
26	Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize. Genetics, 2014, 198, 333-344.	2.9	51
27	Clonal Analysis of Epidermal Patterning during Maize Leaf Development. Developmental Biology, 1999, 216, 646-658.	2.0	43
28	Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. Plant Journal, 1995, 8, 25-36.	5.7	36
29	Plant Cytokinesis: Motoring To The Finish. Current Biology, 2002, 12, R206-R208.	3.9	32
30	Divergent Roles for Maize PAN1 and PAN2 Receptor-Like Proteins in Cytokinesis and Cell Morphogenesis. Plant Physiology, 2014, 164, 1905-1917.	4.8	31
31	Structureâ€function analysis of the maize bulliform cell cuticle and its potential role in dehydration and leaf rolling. Plant Direct, 2020, 4, e00282.	1.9	24
32	Transcriptomic network analyses shed light on the regulation of cuticle development in maize leaves. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12464-12471.	7.1	19
33	Cell Biology of Maize Leaf Development. , 2009, , 179-203.		15
34	Genome-Wide Association Study for Maize Leaf Cuticular Conductance Identifies Candidate Genes Involved in the Regulation of Cuticle Development. G3: Genes, Genomes, Genetics, 2020, 10, 1671-1683.	1.8	13
35	Dominant, Heritable Resistance to Stewart's Wilt in Maize Is Associated with an Enhanced Vascular Defense Response to Infection with <i>Pantoea stewartii</i> . Molecular Plant-Microbe Interactions, 2019, 32, 1581-1597.	2.6	11
36	Machine Learning Enables High-Throughput Phenotyping for Analyses of the Genetic Architecture of Bulliform Cell Patterning in Maize. G3: Genes, Genomes, Genetics, 2019, 9, 4235-4243.	1.8	9

LAURIE G SMITH

#	Article	IF	CITATIONS
37	Integrating GWAS and TWAS to elucidate the genetic architecture of maize leaf cuticular conductance. Plant Physiology, 2022, 189, 2144-2158.	4.8	9
38	Division Plane Orientation in Plant Cells. Plant Cell Monographs, 2007, , 33-57.	0.4	7
39	Investigation of the role of cell-cell interactions in division plane determination during maize leaf development through mosaic analysis of the <i>tangled</i> mutation. Development (Cambridge), 2002, 129, 3219-3226.	2.5	6
40	Immunolocalization of Nuclear Proteins. , 1994, , 158-164.		2