Reem Saleh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6363592/publications.pdf

Version: 2024-02-01

33 papers	1,449 citations	17 h-index	395590 33 g-index
35	35	35	1879
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Intrinsic and acquired cancer immunotherapy resistance. , 2022, , 463-497.		O
2	Lag3: From Bench to Bedside. Cancer Treatment and Research, 2022, 183, 185-199.	0.2	7
3	Transcriptomic Profiling of Circulating HLA-DR [–] Myeloid Cells, Compared with HLA-DR ⁺ Myeloid Antigen-presenting Cells. Immunological Investigations, 2021, 50, 952-963.	1.0	2
4	Differential gene expression of tumor-infiltrating CD33+ myeloid cells in advanced-versus early-stage colorectal cancer. Cancer Immunology, Immunotherapy, 2021, 70, 803-815.	2.0	15
5	Tâ€cell responses and therapies against SARSâ€CoVâ€2 infection. Immunology, 2021, 162, 30-43.	2.0	159
6	Metabolic reprogramming of T regulatory cells in the hypoxic tumor microenvironment. Cancer Immunology, Immunotherapy, 2021, 70, 2103-2121.	2.0	23
7	Transcriptome of CD8+ tumor-infiltrating T cells: a link between diabetes and colorectal cancer. Cancer Immunology, Immunotherapy, 2021, 70, 2625-2638.	2.0	3
8	Transcriptome of Tumor-Infiltrating T Cells in Colorectal Cancer Patients Uncovered a Unique Gene Signature in CD4+ T Cells Associated with Poor Disease-Specific Survival. Vaccines, 2021, 9, 334.	2.1	5
9	Role of circular RNAs in colorectal tumor microenvironment. Biomedicine and Pharmacotherapy, 2021, 137, 111351.	2.5	10
10	Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Seminars in Cancer Biology, 2020, 65, 13-27.	4.3	170
11	Epigenetic regulation of immune checkpoints and TÂcell exhaustion markers in tumor-infiltrating T cells of colorectal cancer patients. Epigenomics, 2020, 12, 1871-1882.	1.0	11
12	Exosomes: Biological Carriers and Promising Tools for Cancer Immunotherapy. Vaccines, 2020, 8, 390.	2.1	5
13	FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Letters, 2020, 490, 174-185.	3.2	169
14	Differential gene expression of tumor-infiltrating CD4 ⁺ T cells in advanced versus early stage colorectal cancer and identification of a gene signature of poor prognosis. Oncolmmunology, 2020, 9, 1825178.	2.1	6
15	Targeting TIM-3 in solid tumors: innovations in the preclinical and translational realm and therapeutic potential. Expert Opinion on Therapeutic Targets, 2020, 24, 1251-1262.	1.5	16
16	Transcriptomic Analyses of Myeloid-Derived Suppressor Cell Subsets in the Circulation of Colorectal Cancer Patients. Frontiers in Oncology, 2020, 10, 1530.	1.3	7
17	Differential gene expression of tumor-infiltrating CD8 ⁺ T cells in advanced versus early-stage colorectal cancer and identification of a gene signature of poor prognosis., 2020, 8, e001294.		25
18	RNA-Seq Analysis of Colorectal Tumor-Infiltrating Myeloid-Derived Suppressor Cell Subsets Revealed Gene Signatures of Poor Prognosis. Frontiers in Oncology, 2020, 10, 604906.	1.3	8

#	Article	IF	CITATIONS
19	DNA methylation in the promoters of PD-L1, MMP9, ARG1, galectin-9, TIM-3, VISTA and TGF-β genes in HLA-DR ^{a€"} myeloid cells, compared with HLA-DR ⁺ antigen-presenting cells. Epigenetics, 2020, 15, 1275-1288.	1.3	21
20	Expression of immune checkpoints and T cell exhaustion markers in early and advanced stages of colorectal cancer. Cancer Immunology, Immunotherapy, 2020, 69, 1989-1999.	2.0	75
21	Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression. Frontiers in Immunology, 2020, 11, 1469.	2.2	58
22	Blockade of PD-1, PD-L1, and TIM-3 Altered Distinct Immune- and Cancer-Related Signaling Pathways in the Transcriptome of Human Breast Cancer Explants. Genes, 2020, 11, 703.	1.0	14
23	Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer. Clinical Epigenetics, 2020, 12, 13.	1.8	52
24	PD-L1 Blockade by Atezolizumab Downregulates Signaling Pathways Associated with Tumor Growth, Metastasis, and Hypoxia in Human Triple Negative Breast Cancer. Cancers, 2019, 11, 1050.	1.7	50
25	Breast Cancer Cells and PD-1/PD-L1 Blockade Upregulate the Expression of PD-1, CTLA-4, TIM-3 and LAG-3 Immune Checkpoints in CD4+ T Cells. Vaccines, 2019, 7, 149.	2.1	63
26	Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Letters, 2019, 457, 168-179.	3.2	148
27	Cytokine-Induced Acute Inflammatory Monoarticular Arthritis. Methods in Molecular Biology, 2018, 1784, 215-223.	0.4	1
28	CCL17 blockade as a therapy for osteoarthritis pain and disease. Arthritis Research and Therapy, 2018, 20, 62.	1.6	71
29	CSF-1 in Inflammatory and Arthritic Pain Development. Journal of Immunology, 2018, 201, 2042-2053.	0.4	22
30	TNF and granulocyte macrophage-colony stimulating factor interdependence mediates inflammation via CCL17. JCI Insight, 2018, 3, .	2.3	36
31	G-CSF Receptor Blockade Ameliorates Arthritic Pain and Disease. Journal of Immunology, 2017, 198, 3565-3575.	0.4	28
32	Granulocyte macrophage colony-stimulating factor receptor \hat{l}_{\pm} expression and its targeting in antigen-induced arthritis and inflammation. Arthritis Research and Therapy, 2016, 18, 287.	1.6	38
33	Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation. Journal of Clinical Investigation, 2016, 126, 3453-3466.	3.9	129