

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6363554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection. Scientific Reports, 2013, 3, 3048.	1.6	573
2	Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule, 2019, 3, 1464-1477.	11.7	448
3	A "skeleton/skin―strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy and Environmental Science, 2012, 5, 8726.	15.6	312
4	High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nature Communications, 2017, 8, 14886.	5.8	257
5	Highly Transparent and Conductive Stretchable Conductors Based on Hierarchical Reticulate Singleâ€Walled Carbon Nanotube Architecture. Advanced Functional Materials, 2012, 22, 5238-5244.	7.8	148
6	Stretchable Lightâ€Emitting Diodes with Organometalâ€Halideâ€Perovskite–Polymer Composite Emitters. Advanced Materials, 2017, 29, 1607053.	11.1	147
7	Superfast-Response and Ultrahigh-Power-Density Electromechanical Actuators Based on Hierarchal Carbon Nanotube Electrodes and Chitosan. Nano Letters, 2011, 11, 4636-4641.	4.5	142
8	Wireless and battery-free technologies for neuroengineering. Nature Biomedical Engineering, 2023, 7, 405-423.	11.6	141
9	Ultrashort Channel Length Black Phosphorus Field-Effect Transistors. ACS Nano, 2015, 9, 9236-9243.	7.3	138
10	Carbon Nanotube Flexible and Stretchable Electronics. Nanoscale Research Letters, 2015, 10, 1013.	3.1	119
11	Fully Printed Stretchable Thin-Film Transistors and Integrated Logic Circuits. ACS Nano, 2016, 10, 11459-11468.	7.3	118
12	Photothermal Effect Induced Negative Photoconductivity and High Responsivity in Flexible Black Phosphorus Transistors. ACS Nano, 2017, 11, 6048-6056.	7.3	104
13	Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2835-2845.	3.3	94
14	Air-Stable Humidity Sensor Using Few-Layer Black Phosphorus. ACS Applied Materials & Interfaces, 2017, 9, 10019-10026.	4.0	92
15	Ultrahighâ€Powerâ€Factor Carbon Nanotubes and an Ingenious Strategy for Thermoelectric Performance Evaluation. Small, 2016, 12, 3407-3414.	5.2	76
16	Fully Printed Silverâ€Nanoparticleâ€Based Strain Gauges with Record High Sensitivity. Advanced Electronic Materials, 2017, 3, 1700067.	2.6	75
17	Direct Printing for Additive Patterning of Silver Nanowires for Stretchable Sensor and Display Applications. Advanced Materials Technologies, 2018, 3, 1700232.	3.0	68
18	Hydro-actuation of hybrid carbon nanotube yarn muscles. Nanoscale, 2016, 8, 17881-17886.	2.8	60

LE CAI

#	Article	IF	CITATIONS
19	Single Pixel Black Phosphorus Photodetector for Nearâ€Infrared Imaging. Small, 2018, 14, 1702082.	5.2	56
20	Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array. Nanoscale, 2015, 7, 12492-12497.	2.8	53
21	Fully Printed Foldable Integrated Logic Gates with Tunable Performance Using Semiconducting Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 5698-5705.	7.8	52
22	Epidermal Supercapacitor with High Performance. Advanced Functional Materials, 2016, 26, 8178-8184.	7.8	52
23	Black Phosphorus Schottky Diodes: Channel Length Scaling and Application as Photodetectors. Advanced Electronic Materials, 2016, 2, 1500346.	2.6	51
24	Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Research, 2014, 7, 1680-1690.	5.8	47
25	Optical visualization and polarized light absorption of the single-wall carbon nanotube to verify intrinsic thermal applications. Light: Science and Applications, 2015, 4, e318-e318.	7.7	43
26	Fully Printed Flexible Dual-Gate Carbon Nanotube Thin-Film Transistors with Tunable Ambipolar Characteristics for Complementary Logic Circuits. ACS Nano, 2018, 12, 11572-11578.	7.3	42
27	Wireless and battery-free platforms for collection of biosignals. Biosensors and Bioelectronics, 2021, 178, 113007.	5.3	40
28	High performance bipolar resistive switching memory devices based on Zn2SnO4 nanowires. Nanoscale, 2012, 4, 2571.	2.8	38
29	Temperature dependent Raman spectra of isolated suspended single-walled carbon nanotubes. Nanoscale, 2014, 6, 3949-3953.	2.8	33
30	High Performance Indiumâ€Galliumâ€Zinc Oxide Thin Film Transistor via Interface Engineering. Advanced Functional Materials, 2020, 30, 2003285.	7.8	33
31	High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films. Nanoscale, 2011, 3, 3731.	2.8	31
32	Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters. Nanoscale, 2013, 5, 4443.	2.8	30
33	Osseosurface electronics—thin, wireless, battery-free and multimodal musculoskeletal biointerfaces. Nature Communications, 2021, 12, 6707.	5.8	29
34	Fully printed flexible carbon nanotube photodetectors. Applied Physics Letters, 2017, 110, .	1.5	23
35	CNT-based sensor arrays for local strain measurements in soft pneumatic actuators. International Journal of Intelligent Robotics and Applications, 2017, 1, 157-166.	1.6	22
36	Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes. Scientific Reports, 2015, 5, 17883.	1.6	20

LE CAI

#	Article	IF	CITATIONS
37	Field-Dependent Mobility Enhancement and Contact Resistance in a-IGZO TFTs. IEEE Transactions on Electron Devices, 2019, 66, 5166-5169.	1.6	16
38	Soft, wireless and subdermally implantable recording and neuromodulation tools. Journal of Neural Engineering, 2021, 18, 041001.	1.8	13
39	Capacitance-Voltage Characteristics of Thin-film Transistors Fabricated with Solution-Processed Semiconducting Carbon Nanotube Networks. Nanoscale Research Letters, 2015, 10, 999.	3.1	12
40	Nicotine Sensors for Wearable Battery-Free Monitoring of Vaping. ACS Sensors, 2022, 7, 82-88.	4.0	9
41	Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters. Nanoscale, 2014, 6, 483-491.	2.8	8
42	Radiation effects in printed flexible single-walled carbon nanotube thin-film transistors. AIP Advances, 2019, 9, .	0.6	7
43	Cluster Size Control toward High Performance Solution Processed InGaZnO Thin Film Transistors. ACS Applied Electronic Materials, 2019, 1, 2483-2488.	2.0	6
44	<l>ln-Situ</l> Raman Spectra of Single-Walled Carbon Nanotube/Epoxy Nanocomposite Film Under Strain. Journal of Nanoscience and Nanotechnology, 2013, 13, 1145-1148.	0.9	5
45	A Facile Method to Fabricate Ultrathin Vertical ZnO Nanowall Arrays. Journal of Nanoscience and Nanotechnology, 2013, 13, 1291-1294.	0.9	4
46	Indium Tin Oxide Nanowires Grown by One-Step Thermal Evaporation-Deposition Process at Low Temperature. Journal of Nanoscience and Nanotechnology, 2013, 13, 1300-1303.	0.9	3
47	Optical and Electrical Performance of HfO ₂ Coated ZnO Nanorod Arrays. Journal of Nanoscience and Nanotechnology, 2013, 13, 1082-1086.	0.9	2
48	Positive-Bias Stress Stability of Solution-Processed Oxide Semiconductor Thin-Film Transistor. IEEE Transactions on Electron Devices, 2022, 69, 3727-3731.	1.6	2
49	Comparison of transport scattering and singleâ€particle relaxation times in modulationâ€doped heterostructures. Journal of Applied Physics, 1994, 76, 390-394.	1.1	0
50	Temperature Dependent Resistance of As-Grown and Chemical Treated Single Walled Carbon Nanotubes Films. Journal of Nanoscience and Nanotechnology, 2013, 13, 1327-1330.	0.9	0