Philip A Fay

List of Publications by Citations

Source: https://exaly.com/author-pdf/6363326/philip-a-fay-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,666 41 127 92 h-index g-index citations papers 8.4 10,142 135 5.37 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
127	Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. <i>Science</i> , 2002 , 298, 2202-5	33.3	824
126	Convergence across biomes to a common rain-use efficiency. <i>Nature</i> , 2004 , 429, 651-4	50.4	786
125	Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. <i>BioScience</i> , 2008 , 58, 811-821	5.7	776
124	Assessing the Response of Terrestrial Ecosystems to Potential Changes in Precipitation. <i>BioScience</i> , 2003 , 53, 941	5.7	591
123	Integrative modelling reveals mechanisms linking productivity and plant species richness. <i>Nature</i> , 2016 , 529, 390-3	50.4	389
122	Productivity is a poor predictor of plant species richness. <i>Science</i> , 2011 , 333, 1750-3	33.3	386
121	Productivity responses to altered rainfall patterns in a C4-dominated grassland. <i>Oecologia</i> , 2003 , 137, 245-51	2.9	333
120	Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. <i>Global Change Biology</i> , 2005 , 11, 322-334	11.4	301
119	Eutrophication weakens stabilizing effects of diversity in natural grasslands. <i>Nature</i> , 2014 , 508, 521-5	50.4	283
118	Grassland productivity limited by multiple nutrients. <i>Nature Plants</i> , 2015 , 1, 15080	11.5	254
117	Addition of multiple limiting resources reduces grassland diversity. <i>Nature</i> , 2016 , 537, 93-96	50.4	225
116	Altering Rainfall Timing and Quantity in a Mesic Grassland Ecosystem: Design and Performance of Rainfall Manipulation Shelters. <i>Ecosystems</i> , 2000 , 3, 308-319	3.9	198
115	Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. <i>Global Change Biology</i> , 2008 , 14, 1600-1608	11.4	190
114	Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. <i>Functional Ecology</i> , 2011 , 25, 456-467	5.6	159
113	Leaf isoprene emission rate as a function of atmospheric CO2 concentration. <i>Global Change Biology</i> , 2009 , 15, 1189-1200	11.4	121
112	Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. <i>Biogeosciences</i> , 2011 , 8, 3053-3068	4.6	107
111	Altered Rainfall Patterns, Gas Exchange, and Growth in Grasses and Forbs. <i>International Journal of Plant Sciences</i> , 2002 , 163, 549-557	2.6	97

(2009-2018)

110	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. <i>Nature Ecology and Evolution</i> , 2018 , 2, 50-56	12.3	97	
109	Plant speciesPorigin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. <i>Nature Communications</i> , 2015 , 6, 7710	17.4	94	
108	Few multiyear precipitation-reduction experiments find alkhift in the productivity-precipitation relationship. <i>Global Change Biology</i> , 2016 , 22, 2570-81	11.4	84	
107	Climate Impacts on Agriculture: Implications for Forage and Rangeland Production. <i>Agronomy Journal</i> , 2011 , 103, 371-381	2.2	82	
106	Abundance of introduced species at home predicts abundance away in herbaceous communities. <i>Ecology Letters</i> , 2011 , 14, 274-81	10	78	
105	Increased photosynthesis and water potentials in Silphium integrifolium galled by cynipid wasps. <i>Oecologia</i> , 1993 , 93, 114-120	2.9	77	
104	Germination, survival, and growth of grass and forb seedlings: Effects of soil moisture variability. <i>Acta Oecologica</i> , 2009 , 35, 679-684	1.7	64	
103	Plant Tolerance of Gall-Insect Attack and Gall-Insect Performance. <i>Ecology</i> , 1996 , 77, 521-534	4.6	64	
102	Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.). <i>BMC Genomics</i> , 2014 , 15, 527	4.5	63	
101	Superstatistics of hydro-climatic fluctuations and interannual ecosystem productivity. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	63	
100	Can current moisture responses predict soil CO₂ efflux under altered precipitation regimes? A synthesis of manipulation experiments. <i>Biogeosciences</i> , 2014 , 11, 2991-3013	4.6	60	
99	Rain use efficiency across a precipitation gradient on the Tibetan Plateau. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	60	
98	Climatic, ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry ecosystems. <i>Ecohydrology</i> , 2015 , 8, 660-681	2.5	59	
97	MILITARY TRAINING EFFECTS ON TERRESTRIAL AND AQUATIC COMMUNITIES ON A GRASSLAND MILITARY INSTALLATION 2003 , 13, 432-442		59	
96	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. <i>Global Change Biology</i> , 2013 , 19, 3677-87	11.4	55	
95	Genotypic variation in traits linked to climate and aboveground productivity in a widespread Cligrass: evidence for a functional trait syndrome. <i>New Phytologist</i> , 2013 , 199, 966-980	9.8	55	
94	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. <i>Nature Ecology and Evolution</i> , 2019 , 3, 400-406	12.3	49	
93	Ecophysiological responses of two dominant grasses to altered temperature and precipitation regimes. <i>Acta Oecologica</i> , 2009 , 35, 400-408	1.7	48	

92	Perennial Biomass Grasses and the Mason D ixon Line: Comparative Productivity across Latitudes in the Southern Great Plains. <i>Bioenergy Research</i> , 2013 , 6, 276-291	3.1	47
91	Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality. <i>Soil Biology and Biochemistry</i> , 2013 , 58, 172-180	7.5	47
90	Atmospheric CO2 and soil extracellular enzyme activity: a meta-analysis and CO2 gradient experiment. <i>Ecosphere</i> , 2011 , 2, art96	3.1	43
89	Soil-mediated effects of subambient to increased carbon dioxide on grassland productivity. <i>Nature Climate Change</i> , 2012 , 2, 742-746	21.4	42
88	Photosynthetic traits in C3 and C4 grassland species in mesocosm and field environments. <i>Environmental and Experimental Botany</i> , 2007 , 60, 412-420	5.9	42
87	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. <i>Nature</i> , 2021 , 590, 438-	· 43131 4	42
86	Ecological genomics: making the leap from model systems in the lab to native populations in the field. <i>Frontiers in Ecology and the Environment</i> , 2007 , 5, 19-24	5.5	39
85	Within-plant distribution of a galling adelgid (Homoptera: Adelgidae): the consequences of conflicting survivorship, growth, and reproduction. <i>Ecological Entomology</i> , 1990 , 15, 245-254	2.1	38
84	QTL Lenvironment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 12933-12941	11.5	36
83	Constraints on growth and allocation patterns of Silphium integrifolium (Asteraceae) caused by a cynipid gall wasp. <i>Oecologia</i> , 1991 , 88, 243-250	2.9	35
82	Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field. <i>Agriculture, Ecosystems and Environment</i> , 2017 , 248, 29-37	5.7	34
81	Primary Productivity and Water Balance of Grassland Vegetation on Three Soils in a Continuous CO2 Gradient: Initial Results from the Lysimeter CO2 Gradient Experiment. <i>Ecosystems</i> , 2009 , 12, 699-7	14 ⁹	34
80	Soil net nitrogen mineralisation across global grasslands. <i>Nature Communications</i> , 2019 , 10, 4981	17.4	33
79	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. <i>Functional Ecology</i> , 2017 , 31, 1839-1846	5.6	30
78	CO2-caused change in plant species composition rivals the shift in vegetation between mid-grass and tallgrass prairies. <i>Global Change Biology</i> , 2012 , 18, 700-710	11.4	29
77	Feedback from plant species change amplifies CO2 enhancement of grassland productivity. <i>Global Change Biology</i> , 2012 , 18, 2813-23	11.4	28
76	Application of a conceptual framework to interpret variability in rangeland responses to atmospheric CO2 enrichment. <i>Journal of Agricultural Science</i> , 2011 , 149, 1-14	1	28
75	Anthropogenic-based regional-scale factors most consistently explain plot-level exotic diversity in grasslands. <i>Global Ecology and Biogeography</i> , 2014 , 23, 802-810	6.1	27

(2003-2010)

74	Variation in gene expression of Andropogon gerardii in response to altered environmental conditions associated with climate change. <i>Journal of Ecology</i> , 2010 , 98, 374-383	6	27
73	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness". <i>Science</i> , 2012 , 335, 1441-1441	33.3	27
72	Promises and Challenges of Eco-Physiological Genomics in the Field: Tests of Drought Responses in Switchgrass. <i>Plant Physiology</i> , 2016 , 172, 734-748	6.6	26
71	Impacts of climate change drivers on C4 grassland productivity: scaling driver effects through the plant community. <i>Journal of Experimental Botany</i> , 2014 , 65, 3415-24	7	25
70	Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 7364-77	4.8	25
69	Climate modifies response of non-native and native species richness to nutrient enrichment. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2016 , 371,	5.8	25
68	Precipitation variability and primary productivity in water-limited ecosystems: how plants ReverageP precipitation to FinancePgrowth. <i>New Phytologist</i> , 2009 , 181, 5-8	9.8	23
67	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. <i>Nature Communications</i> , 2020 , 11, 5375	17.4	23
66	The effect of subambient to elevated atmospheric COL concentration on vascular function in Helianthus annuus: implications for plant response to climate change. <i>New Phytologist</i> , 2013 , 199, 956-9	985 ⁸	22
65	The functional resource of a gall-forming adelgid. <i>Oecologia</i> , 1996 , 105, 199-204	2.9	22
64	Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. <i>Environmental Research Letters</i> , 2018 , 13, 125006	6.2	21
63	Comparing Biomass Yields of Low-Input High-Diversity Communities with Managed Monocultures Across the Central United States. <i>Bioenergy Research</i> , 2010 , 3, 353-361	3.1	20
62	Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. <i>Ecology Letters</i> , 2018 , 21, 1364-1371	10	20
61	Climate change impacts on freshwater wetland hydrology and vegetation cover cycling along a regional aridity gradient. <i>Ecosphere</i> , 2016 , 7, e01504	3.1	19
60	Modeling the vegetation along a controlled CO2 gradient. <i>Ecological Modelling</i> , 2011 , 222, 653-665	3	19
59	Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment. <i>PLoS ONE</i> , 2018 , 13, e0192555	3.7	18
58	CO2 enrichment increases element concentrations in grass mixtures by changing species abundances. <i>Plant Ecology</i> , 2011 , 212, 945-957	1.7	18
57	Insect Diversity in Two Burned and Grazed Grasslands. <i>Environmental Entomology</i> , 2003 , 32, 1099-1104	2.1	18

56	Gall Wasp (Hymenoptera: Cynipidae) Mortality in a Spring Tallgrass Prairie Fire. <i>Environmental Entomology</i> , 1993 , 22, 1333-1337	2.1	18
55	Nutrient addition increases grassland sensitivity to droughts. <i>Ecology</i> , 2020 , 101, e02981	4.6	17
54	Traits of an invasive grass conferring an early growth advantage over native grasses. <i>Journal of Plant Ecology</i> , 2016 , 9, 672-681	1.7	17
53	Stomatal and photosynthetic responses to shade in sorghum, soybean and eastern gamagrass. <i>Physiologia Plantarum</i> , 1995 , 94, 613-620	4.6	16
52	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness". <i>Science</i> , 2016 , 351, 457	33.3	15
51	Soil carbon responses to past and future CO2 in three Texas prairie soils. <i>Soil Biology and Biochemistry</i> , 2015 , 83, 66-75	7.5	15
50	Nutrients and environment influence arbuscular mycorrhizal colonization both independently and interactively in Schizachyrium scoparium. <i>Plant and Soil</i> , 2018 , 425, 493-506	4.2	14
49	Branching responses in Silphium integrifolium (Asteraceae) following mechanical or gall damage to apical meristems and neighbor removal. <i>American Journal of Botany</i> , 2005 , 92, 954-9	2.7	13
48	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. <i>Ecology</i> , 2021 , 102, e03218	4.6	13
47	Climate and local environment structure asynchrony and the stability of primary production in grasslands. <i>Global Ecology and Biogeography</i> , 2020 , 29, 1177-1188	6.1	11
46	Responses of switchgrass soil respiration and its components to precipitation gradient in a mesocosm study. <i>Plant and Soil</i> , 2017 , 420, 105-117	4.2	11
45	Dominant plant taxa predict plant productivity responses to CO2 enrichment across precipitation and soil gradients. <i>AoB PLANTS</i> , 2015 , 7,	2.9	11
44	Accelerated development in Johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition. <i>PLoS ONE</i> , 2017 , 12, e0176042	3.7	11
43	Spectral Heterogeneity Predicts Local-Scale Gamma and Beta Diversity of Mesic Grasslands. <i>Remote Sensing</i> , 2019 , 11, 458	5	10
42	QTL and Drought Effects on Leaf Physiology in Lowland Panicum virgatum. <i>Bioenergy Research</i> , 2016 , 9, 1241-1259	3.1	9
41	Stomatal and photosynthetic responses to shade in sorghum, soybean and eastern gamagrass. <i>Physiologia Plantarum</i> , 1995 , 94, 613-620	4.6	9
40	Photosynthetic and Stomatal Responses to Variable Light in a Cool-Season and a Warm-Season Prairie Forb. <i>International Journal of Plant Sciences</i> , 1996 , 157, 303-308	2.6	9
39	Photosynthetic and Stomatal Responses of Avena sativa (Poaceae) to a Variable Light Environment. <i>American Journal of Botany</i> , 1993 , 80, 1369	2.7	9

(2020-2020)

38	Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. <i>Global Change Biology</i> , 2020 , 26, 7173-7185	11.4	9
37	Bloom and Bust: ecological consequences of precipitation variability in aridlands. <i>Plant Ecology</i> , 2019 , 220, 135-139	1.7	8
36	Plant community change mediates the response of foliar (115)N to CO 2 enrichment in mesic grasslands. <i>Oecologia</i> , 2015 , 178, 591-601	2.9	8
35	Corrigendum to "Can current moisture responses predict soil CO₂ efflux under altered precipitation regimes? A synthesis of manipulation experiments". <i>Biogeosciences</i> , 2014 , 11, 3307-3308	4.6	8
34	Effects of Fire, Browsers and Gallers on New Jersey Tea (Ceanothus herbaceous) Growth and Reproduction. <i>American Midland Naturalist</i> , 1999 , 141, 51-58	0.7	8
33	Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (Panicum virgatum). <i>New Phytologist</i> , 2020 , 227, 1696-1708	9.8	7
32	Productivity of well-watered Panicum virgatum does not increase with CO2 enrichment. <i>Journal of Plant Ecology</i> , 2012 , 5, 366-375	1.7	7
31	Initial response of evapotranspiration from tallgrass prairie vegetation to CO2 at subambient to elevated concentrations. <i>Functional Ecology</i> , 2007 , 22, 071029083929003-???	5.6	7
30	CO enrichment and soil type additively regulate grassland productivity. New Phytologist, 2019, 222, 183	3-9.982	7
29	Photosynthetic and stomatal responses of Avena sativa (poaceae) to a variable light environment. <i>American Journal of Botany</i> , 1993 , 80, 1369-1373	2.7	6
28	Bacterial community response to a preindustrial-to-future CO gradient is limited and soil specific in Texas Prairie grassland. <i>Global Change Biology</i> , 2018 , 24, 5815-5827	11.4	6
27	Spectrally derived values of community leaf dry matter content link shifts in grassland composition with change in biomass production. <i>Remote Sensing in Ecology and Conservation</i> , 2020 , 6, 344-353	5.3	5
26	Biotic Regulation of CO2 Uptakellimate Responses: Links to Vegetation Properties. <i>Ecosystems</i> , 2016 , 19, 1376-1385	3.9	5
25	Inter-Annual Precipitation Variability Decreases Switchgrass Productivity from Arid to Mesic Environments. <i>Bioenergy Research</i> , 2018 , 11, 614-622	3.1	5
24	Climate Variability in Tallgrass Prairie at Multiple Timescales: Konza Prairie Biological Station 2003,		5
23	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
22	Responses to Short-Term Reductions in Light in Soybean Leaves: Effects of Leaf Position and Drought Stress. <i>International Journal of Plant Sciences</i> , 1998 , 159, 805-811	2.6	4
21	Temporal stability of grassland metacommunities is regulated more by community functional traits than species diversity. <i>Ecosphere</i> , 2020 , 11, e03178	3.1	4

20	Intercropping switchgrass with hybrid poplar increased carbon sequestration on a sand soil. <i>Biomass and Bioenergy</i> , 2020 , 138, 105558	5.3	3
19	Plant biomass, not plant economics traits, determines responses of soil CO2 efflux to precipitation in the C4 grass Panicum virgatum. <i>Journal of Ecology</i> , 2020 , 108, 2095-2106	6	3
18	Flowering in grassland predicted by CO and resource effects on species aboveground biomass. <i>Global Change Biology</i> , 2018 , 24, 1771-1781	11.4	3
17	Relative effects of precipitation variability and warming on grassland ecosystem function		3
16	Multiple constraints cause positive and negative feedbacks limiting grassland soil CO efflux under CO enrichment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
15	Effects of nitrogen fertilization and bioenergy crop species on central tendency and spatial heterogeneity of soil glycosidase activities. <i>Scientific Reports</i> , 2020 , 10, 19681	4.9	3
14	Intraspecific variation in precipitation responses of a widespread C4grass depends on site water limitation. <i>Journal of Plant Ecology</i> , 2016 , rtw040	1.7	3
13	Biomass production and temporal stability are similar in switchgrass monoculture and diverse grassland. <i>Biomass and Bioenergy</i> , 2020 , 142, 105758	5.3	2
12	Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decade-long fertilization. <i>Global Change Biology</i> , 2021 ,	11.4	2
11	Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?. <i>Ecology Letters</i> , 2021 , 24, 2713-2725	10	2
10	Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. <i>Journal of Ecology</i> ,	6	2
9	A long-term study of burning effects on a plant pathogen in tallgrass prairie. <i>Plant Pathology</i> , 2017 , 66, 1308-1317	2.8	1
8	CO2 and soil water potential as regulators of the growth and N fraction derived from fixation of a legume in tallgrass prairie communities. <i>Plant and Soil</i> , 2016 , 409, 361-370	4.2	1
7	A CO2 Concentration Gradient Facility for Testing CO2 Enrichment and Soil Effects on Grassland Ecosystem Function. <i>Journal of Visualized Experiments</i> , 2015 ,	1.6	1
6	Effects of Compounded Precipitation Pattern Intensification and Drought Occur Belowground in a Mesic Grassland. <i>Ecosystems</i> ,1	3.9	1
5	Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (Panicum virgatum)		1
4	Intercropping with Switchgrass Improves Net Greenhouse Gas Balance in Hybrid Poplar Plantations on a Sand Soil. <i>Soil Science Society of America Journal</i> , 2017 , 81, 781	2.5	1
3	Soil extracellular oxidases mediated nitrogen fertilization effects on soil organic carbon sequestration in bioenergy croplands. <i>GCB Bioenergy</i> , 2021 , 13, 1303-1318	5.6	1

LIST OF PUBLICATIONS

A generalist-specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range.. *Proceedings of the National Academy of Sciences of the United States of America*, **2022**, 119, e2118879119

11.5 1

Nutrient identity modifies the destabilising effects of eutrophication in grasslands.. *Ecology Letters*, **2021**,

10