Akio Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6363112/publications.pdf

Version: 2024-02-01

147801 214800 2,802 104 31 47 h-index citations g-index papers 149 149 149 2210 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of Pyrroles by Gold(I)-Catalyzed Aminoâ^'Claisen Rearrangement of <i>N</i> -Propargyl Enaminone Derivatives. Organic Letters, 2010, 12, 372-374.	4.6	235
2	Novel One-Pot Approach to Synthesis of Indanones through Sb(V)-Catalyzed Reaction of Phenylalkynes with Aldehydes. Organic Letters, 2008, 10, 1783-1785.	4.6	136
3	Metal-Free $[2+2+1]$ Annulation of Alkynes, Nitriles, and Oxygen Atoms: Iodine(III)-Mediated Synthesis of Highly Substituted Oxazoles. Organic Letters, 2013, 15, 2672-2675.	4.6	98
4	Synthesis of 2,3-Disubstituted Indoles by a Rhodium-Catalyzed Aromatic Amino-Claisen Rearrangement of N-Propargyl Anilines. Angewandte Chemie - International Edition, 2007, 46, 3931-3933.	13.8	72
5	Catalytic Asymmetric Iodocarbocyclization Reaction of 4-Alkenylmalonates and Its Application to Enantiotopic Group Selective Reaction. Journal of Organic Chemistry, 1997, 62, 7384-7389.	3.2	69
6	Synthesis of 2,3-Dihydroquinolin-4(1 <i>H</i>)-ones through Catalytic Metathesis of <i>O</i> -Alkynylanilines and Aldehydes. Journal of Organic Chemistry, 2009, 74, 5644-5647.	3. 2	65
7	PIDA-mediated synthesis of oxazoles through oxidative cycloisomerization of propargylamides. Tetrahedron Letters, 2010, 51, 2247-2250.	1.4	62
8	lodine(III)-Catalyzed Formal $[2 + 2 + 1]$ Cycloaddition Reaction for Metal-Free Construction of Oxazoles. Organic Letters, 2017, 19, 2506-2509.	4.6	61
9	Preparation, structure, and versatile reactivity of pseudocyclic benziodoxole triflate, new hypervalent iodine reagent. Chemical Communications, 2015, 51, 7835-7838.	4.1	59
10	Tetra- <i>n</i> -butylammonium Iodide Catalyzed Câ€"H Azidation of Aldehydes with Thermally Stable Azidobenziodoxolone. Organic Letters, 2015, 17, 5212-5215.	4.6	58
11	lodonium Salts as Benzyne Precursors. Chemistry - A European Journal, 2018, 24, 15156-15166.	3.3	54
12	Cationic Rh(I) Catalyst in Fluorinated Alcohol:Â Mild Intramolecular Cycloaddition Reactions of Ester-Tethered Unsaturated Compounds. Journal of Organic Chemistry, 2006, 71, 6437-6443.	3.2	53
13	Synthesis of oxazoles through Pd-catalyzed cycloisomerization–allylation of N-propargylamides with allyl carbonates. Tetrahedron Letters, 2010, 51, 1471-1474.	1.4	53
14	Rhodium(I)-Catalyzed Synthesis of Indoles: Amino-Claisen Rearrangement of N-Propargylanilines. Journal of Organic Chemistry, 2009, 74, 1517-1524.	3.2	50
15	Enantioselective synthesis of N–C axially chiral indoles through chiral palladium-catalyzed 5-endo-hydroaminocyclization. Tetrahedron, 2016, 72, 5221-5229.	1.9	50
16	Tandem Synthesis of 2,3-Dihydro-4-iminoquinolines via Three-Component Alkyne-Imine Metathesis. Journal of Organic Chemistry, 2010, 75, 6980-6982.	3.2	49
17	Stereoselective construction of functionalized (Z)-fluoroalkenes directed to depsipeptide isosteres. Tetrahedron Letters, 2002, 43, 5845-5847.	1.4	48
18	Molecular-Iodine-Catalyzed Cyclization of 2-Alkynylanilines via Iodocyclization–Protodeiodination Sequence. Organic Letters, 2017, 19, 6744-6747.	4.6	47

#	Article	IF	CITATIONS
19	Stereoselective synthesis of (Z)-fluoroalkenes directed to peptide isosteres: copper mediated reaction of trialkylaluminum with 4,4-difluoro-5-hydroxyallylic alcohol derivatives. Tetrahedron, 2005, 61, 5741-5753.	1.9	46
20	Regioselective Zn(OAc) ₂ -catalyzed azide–alkyne cycloaddition in water: the green click-chemistry. Organic Chemistry Frontiers, 2017, 4, 978-985.	4.5	44
21	Synthesis of tetrahydroisoquinolines and isochromans via Pictet–Spengler reactions catalyzed by Brønsted acid–surfactant-combined catalyst in aqueous media. Tetrahedron, 2007, 63, 4039-4047.	1.9	41
22	Rh(I)-catalyzed intramolecular hetero-[4+2] cycloaddition of ï‰-alkynyl-vinyl oximes. Tetrahedron Letters, 2007, 48, 6852-6855.	1.4	41
23	Copper mediated defluorinative allylic alkylation of difluorohomoallyl alcohol derivatives directed to an efficient synthetic method for (Z)-fluoroalkene dipeptide isosteres. Journal of Fluorine Chemistry, 2011, 132, 327-338.	1.7	39
24	Saccharinâ€Based μâ€Oxo Imidoiodane: A Readily Available and Highly Reactive Reagent for Electrophilic Amination. Chemistry - A European Journal, 2015, 21, 5328-5331.	3.3	39
25	Pseudocyclic Arylbenziodoxaboroles: Efficient Benzyne Precursors Triggered by Water at Room Temperature. Chemistry - A European Journal, 2017, 23, 16738-16742.	3.3	39
26	An efficient synthetic method for Z-fluoroalkene dipeptide isosteres: Application to the synthesis of the dipeptide isostere of Sta-Ala. Journal of Fluorine Chemistry, 2006, 127, 627-636.	1.7	38
27	Metalâ€Free [2+2+1] Annulation of Alkynes, Nitriles and Nitrogen Atoms from Iminoiodanes for Synthesis of Highly Substituted Imidazoles. Advanced Synthesis and Catalysis, 2015, 357, 667-671.	4.3	38
28	Barluenga's reagent with HBF ₄ as an efficient catalyst for alkyne-carbonyl metathesis of unactivated alkynes. Organic and Biomolecular Chemistry, 2016, 14, 10352-10356.	2.8	38
29	Intramolecular Diels–Alder reaction of 1,7,9-decatrienoates catalyzed by indium(III) trifluoromethanesulfonate in aqueous media. Tetrahedron, 2005, 61, 7087-7093.	1.9	36
30	Asymmetric Diels–Alder reactions of 2-fluoroacrylic acid derivatives. Part 1: The construction of fluorine substituted chiral tertiary carbon. Tetrahedron: Asymmetry, 1998, 9, 1979-1987.	1.8	34
31	Synthesis of α-Alkylated (Z)-γ-Fluoro-β,γ-enoates through Organocopper Mediated Reaction of \hat{I}^3 , \hat{I}^3 -Difluoro-α, \hat{I}^2 -enoates: A Different Reactivity of R3Al-Cu(I) and Me2CuLi. Chemistry Letters, 2002, 31, 28-29.	1.3	34
32	Pictet–Spengler reactions catalyzed by Brønsted acid-surfactant-combined catalyst in water or aqueous media. Tetrahedron Letters, 2007, 48, 835-839.	1.4	33
33	Pd-catalyzed cycloisomerization–allylation of 4-alkynones: synthesis of 5-homoallylfuran derivatives. Tetrahedron Letters, 2011, 52, 4299-4302.	1.4	33
34	Synthesis of Oxazoline and Oxazole Derivatives by Hypervalent-Iodine-Mediated Oxidative Cycloaddition Reactions. Synthesis, 2020, 52, 2299-2310.	2.3	33
35	Iodine(III)â€Mediated/Catalyzed Cycloisomerization–Amination Sequence of <i>N</i> â€Propargyl Carboxamides. Advanced Synthesis and Catalysis, 2017, 359, 3243-3247.	4.3	31
36	Asymmetric Diels–Alder reactions of 2-fluoroacrylic acid derivatives. Part 2: A remarkable effect of fluorine substituent on the diastereoselectivity. Tetrahedron: Asymmetry, 1998, 9, 1989-1994.	1.8	30

#	Article	IF	CITATIONS
37	Intramolecular Dielsâ^'Alder Reactions of Ester-Tethered 1,7,9-Decatrienoates: Bis[chloro(methyl)aluminum]trifluoromethanesulfonamide as a Catalyst. Organic Letters, 2002, 4, 4619-4621.	4.6	29
38	Carbocyclization reactions of terminally difluorinated alkenyl active methine compounds mediated by SnCl4 and amine. Journal of Fluorine Chemistry, 2003, 123, 75-80.	1.7	28
39	Syntheses of Heterocycles via Alkyne-Carbonyl Metathesis of Unactivated Alkynes. Heterocycles, 2016, 92, 607.	0.7	28
40	Oxidative Cycloaddition of Aldoximes with Maleimides using Catalytic Hydroxy(aryl)iodonium Species. Advanced Synthesis and Catalysis, 2016, 358, 2340-2344.	4.3	27
41	Single-Step Synthesis of Iodinated Oxazoles from $\langle i \rangle N \langle i \rangle$ -Propargyl Amides Mediated by I $\langle sub \rangle 2 \langle sub \rangle N \langle sub \rangle$	3.2	27
42	PIFA-mediated oxidative cycloisomerization of 2-propargyl-1,3-dicarbonyl compounds: divergent synthesis of furfuryl alcohols and furfurals. Tetrahedron Letters, 2011, 52, 4658-4661.	1.4	26
43	Synthesis of 2-fluoro analog of 6-aminonorbornane-2,6-dicarboxylic acid: A conformationally rigid glutamic acid derivative. Tetrahedron, 1999, 55, 12741-12750.	1.9	25
44	Efficient intramolecular Dielsâ€"Alder reactions of ester-tethered 1,7,9-decatrienoates catalyzed by bis-aluminated trifluoromethanesulfonamide. Tetrahedron, 2004, 60, 12239-12247.	1.9	25
45	Hypervalent Iodineâ€Catalyzed Synthesis of 1,2,4â€Oxadiazoles from Aldoximes and Nitriles. Asian Journal of Organic Chemistry, 2016, 5, 1128-1133.	2.7	25
46	Preparation, Structure, and Reactivity of Pseudocyclic Benziodoxole Tosylates: New Hypervalent lodine Oxidants and Electrophiles. Chemistry - A European Journal, 2017, 23, 691-695.	3.3	25
47	Rh(I)-catalyzed mild intramolecular [4+2] cycloaddition reactions of ester-tethered diene-yne compounds. Tetrahedron Letters, 2006, 47, 891-895.	1.4	24
48	Bis-aluminated triflic amide promoted Diels–Alder reactions of α,β-unsaturated lactones. Tetrahedron Letters, 2004, 45, 9439-9442.	1.4	23
49	Catalytic Cycloisomerization–Fluorination Sequence of <i>N</i> à€Propargyl Amides by Iodoarene/HFâ <pyridine 1314-1317.<="" 2016,="" 5,="" asian="" chemistry,="" journal="" of="" organic="" selectfluor="" systems.="" td=""><td>2.7</td><td>23</td></pyridine>	2.7	23
50	Gold-Catalyzed Domino Synthesis of Functionalized Benzofurans and Tetracyclic Isochromans via Formal Carboalkoxylation. Organic Letters, 2016, 18, 4136-4139.	4.6	23
51	Chromium mediated stereoselective synthesis of (Z)-1-fluoro-2-alkenyl alkyl and trialkylsilyl ethers from dibromofluoromethylcarbinyl ethers. Tetrahedron Letters, 2005, 46, 5257-5261.	1.4	21
52	Cyclization/acylation reactions by nickel-catalyzed reactions of 1,6-ynal and 1,6-enyne derivatives with acylzirconocene chloride. Tetrahedron Letters, 2006, 47, 2201-2204.	1.4	20
53	Synthesis of Highly Substituted Oxazoles through Iodine(III)-Mediated Reactions of Ketones with Nitriles. Molecules, 2012, 17, 11046-11055.	3.8	20
54	Synthesis, in vitro pharmacology, and pharmacokinetic profiles of 2-[1-amino-1-carboxy-2-(9H-xanthen-9-yl)-ethyl]-1-fluorocyclopropanecarboxylic acid and its 6-heptyl ester, a potent mGluR2 antagonist. Bioorganic and Medicinal Chemistry, 2008, 16, 4359-4366.	3.0	19

#	ARTICLE	IF	CITATIONS
55	Development of Iminoâ€î» < sup > 3 < /sup > â€iodanes with Improved Reactivity for Metalâ€Free [2+2+1] Cycloadditionâ€Type Reactions. Advanced Synthesis and Catalysis, 2017, 359, 3860-3864.	4.3	19
56	Domino Synthesis of 2,3-Dialkylidenetetrahydrofurans via Tandem Prins Cyclization–Skeletal Reorganization. Organic Letters, 2018, 20, 4709-4712.	4.6	18
57	A stereoselective preparation of 1-fluorocyclopropane-1-carboxylate derivatives through radical addition of fluoroiodoacetate to alkenes followed by intramolecular substitution reaction. Tetrahedron, 2001, 57, 7487-7493.	1.9	17
58	Fluorocyclization of <i>N</i> à€Propargyl Carboxamides by λ ³ â€Iodane Catalysts with Coordinating Substituents. Advanced Synthesis and Catalysis, 2020, 362, 2997-3003.	4.3	17
59	Hypervalent Iodine-mediated/Catalyzed Oxidative Cycloisomerization/Annulation of Alkynes for Metal-free Synthesis of Oxazoles. Current Organic Chemistry, 2020, 24, 2048-2069.	1.6	16
60	Rh(I)-catalyzed conjugate addition of alkenylzirconocene chloride: stereoselective formation of carbocycles through cascade reaction. Tetrahedron Letters, 2007, 48, 6471-6474.	1.4	15
61	Hypervalent Iodine(III) Reagent Mediated Regioselective Cycloaddition of Aldoximes with Enaminones. European Journal of Organic Chemistry, 2019, 2019, 6682-6689.	2.4	15
62	Intramolecular Diels–Alder reaction of α-fluoroacrylate derivatives promoted by novel bidentate aluminum Lewis acid. Journal of Fluorine Chemistry, 2005, 126, 709-714.	1.7	13
63	Chromium-mediated fluoroalkenylation reactions of 1,1-dibromo-1-fluoroalkane and 1-bromo-1-fluoroalkene derivatives. Journal of Fluorine Chemistry, 2005, 126, 1166-1173.	1.7	13
64	Intramolecular [3+2] cycloaddition reaction of α,β-enoate derivatives having allylsilane parts: 1,1′-biphenyl-2,2′-di(triflyl)amide (BIPAM)+2Me2AlCl as a novel Lewis acid. Tetrahedron Letters, 2006, 47, 4181-4185.	1.4	12
65	Development of efficient Lewis acid catalysts for intramolecular cycloaddition reactions of ester-tethered substrates. Chemical Record, 2007, 7, 167-179.	5.8	12
66	Catalytic addition of alkenylzirconocene chloride to 3,4-dihydroisoquinoline and its enantioselective reaction. Tetrahedron Letters, 2009, 50, 587-589.	1.4	12
67	Threeâ€Component Regioselective Synthesis of Tetrahydrofuro[2,3â€ <i>d</i>)oxazoles and Their Efficient Conversion to Oxazoles. Asian Journal of Organic Chemistry, 2017, 6, 673-676.	2.7	12
68	Preparation and structure of phenolic aryliodonium salts. Chemical Communications, 2018, 54, 10363-10366.	4.1	12
69	Alkyne aza-Prins cyclization of $\langle i \rangle N \langle i \rangle$ -(hexa-3,5-diynyl)tosylamides with aldehydes using triflic acid and a binuclear aluminum complex. Chemical Communications, 2019, 55, 8619-8622.	4.1	11
70	Preparation, structure, and reactivity of bicyclic benziodazole: a new hypervalent iodine heterocycle. Beilstein Journal of Organic Chemistry, 2018, 14, 1016-1020.	2.2	10
71	Metal-free syntheses of oxazoles and their analogues based on \hat{i} » 3-iodane-mediated cycloisomerization/functionalization reactions or [2+2+1] cycloaddition type reactions. Arkivoc, 2017, 2017, 84-98.	0.5	9
72	Preparation, Structure, and Reactivity of Pseudocyclic βâ€Trifluorosulfonyloxy Vinylbenziodoxolone Derivatives. Advanced Synthesis and Catalysis, 2021, 363, 3365-3371.	4.3	9

#	Article	IF	CITATIONS
73	Formal [2+2+1] Synthesis of Tetrasubstituted Furans from Aldehydes, Acetylenedicarboxylates, and Acyl Compounds. European Journal of Organic Chemistry, 2019, 2019, 5603-5609.	2.4	8
74	Hetero Diels–Alder Reaction and Ene Reaction of Acylnitroso Species in situ Generated by Hypoiodite Catalysis. European Journal of Organic Chemistry, 2018, 2018, 6199-6203.	2.4	7
75	Sulfonylimino Group Transfer Reaction Using Imino-λ3-iodanes with I2 as Catalyst Under Metal-free Conditions. Molecules, 2019, 24, 979.	3.8	7
76	Synthesis of \hat{l} ±-(aminoethyl)- \hat{l} ±, \hat{l} 2-enones <i>via</i> alkyne aza-Prins cyclization and their synthetic application to pyrrolidines. Organic and Biomolecular Chemistry, 2021, 19, 2959-2967.	2.8	7
77	Preparation of (Z)-1-fluoro-1-alkenyl carboxylates, carbonates and carbamates through chromium mediated transformation of dibromofluoromethylcarbinyl esters and the reactivity as double acyl group donors. Journal of Fluorine Chemistry, 2012, 133, 38-51.	1.7	6
78	Reissert‶ype Acylation with Acylzirconocene Chloride Complexes. European Journal of Organic Chemistry, 2013, 2013, 7295-7299.	2.4	6
79	Oxidative cycloaddition of hydroxamic acids with dienes or guaiacols mediated by iodine(III) reagents. Beilstein Journal of Organic Chemistry, 2018, 14, 531-536.	2.2	6
80	Formal <i>N</i> à€Acylation Reaction of Azaaromatics with Acylzirconocene Chloride Complexes and 1,1,1,3,3,3â€Hexafluoroâ€2â€propanol. Advanced Synthesis and Catalysis, 2015, 357, 1049-1052.	4.3	5
81	Three-Component Synthesis of Indolizines from Azaaromatic-Acetylenedicarboxylate Zwitterions with Acylzirconocene Chloride Complexes. Heterocycles, 2015, 90, 108.	0.7	5
82	Preparation of Pd-loaded gels bearing a thiol group and their catalytic activities in the Suzuki-Miyaura cross-coupling reaction. Materials Today Communications, 2020, 24, 101084.	1.9	5
83	BF ₃ -Catalyzed Skeletal Rearrangement of 7-En-2-ynones to <i>endo</i> -Type Cyclic Dienes. Organic Letters, 2020, 22, 4063-4067.	4.6	5
84	Dehydrogenative Cycloisomerization/Arylation Sequence of (i>N (i) a€Propargyl Carboxamides with Arenes by Iodine(III)a€Catalysis. Advanced Synthesis and Catalysis, 2022, 364, 2053-2059.	4.3	5
85	Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes. Molecules, 2022, 27, 3860.	3.8	5
86	<i>In Situ</i> Generation of <i>N</i> -Triflylimino-l̂» ³ -iodanes: Application to Imidation of Phosphines and Catalytic l̂±-Amidation of 1,3-Dicarbonyl Compounds. Organic Letters, 2022, 24, 5230-5234.	4.6	5
87	Reissert-like Alkenylation of Azaaromatic Compounds with Alkenylzirconocene Chloride Complexes. Heterocycles, 2012, 86, 267.	0.7	4
88	Iminoâ€Î» 3 â€iodane and Catalytic Amount of I 2 â€Mediated Synthesis of N â€Allylsulfenamides via [2,3]â€Sigmatropic Rearrangement. European Journal of Organic Chemistry, 2020, 2020, 6433-6439.	2.4	4
89	2-Picoline catalyst-triggered $[2 + 2 + 2]$ cycloaddition-type reaction of acetylenedicarboxylates, aldehydes and alkenes. Organic and Biomolecular Chemistry, 2018, 16, 5965-5968.	2.8	3
90	Synthesis of arylbenziodoxoles using pseudocyclic benziodoxole triflate and arenes. Arkivoc, 2021, 2020, 35-49.	0.5	3

#	Article	IF	Citations
91	Domino Synthesis of 4â€Alkylideneâ€3,4â€dihydroâ€2 <i>H</i> à€pyrroles from Homopropargyl Sulfonamides and Aldehydes. European Journal of Organic Chemistry, 2021, 2021, 5717-5724.	2.4	2
92	Convenient Synthesis of Benziodazolone: New Reagents for Direct Esterification of Alcohols and Amidation of Amines. Molecules, 2021, 26, 7355.	3.8	2
93	2-lodosylbenzoic acid activated by trifluoromethanesulfonic anhydride: efficient oxidant and electrophilic reagent for preparation of iodonium salts. New Journal of Chemistry, 2021, 45, 16434-16437.	2.8	1
94	Catalytic Consecutive Reactions of Alkynes for Syntheses of Heterocycles. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 246-256.	0.1	1
95	Intramolecular Diels—Alder Reactions of Ester-Tethered 1,7,9-Decatrienoates: Bis[chloro(methyl)aluminum]trifluoromethanesulfonamide as a Catalyst ChemInform, 2003, 34, no.	0.0	O
96	Carbocyclization Reactions of Terminally Difluorinated Alkenyl Active Methine Compounds Mediated by SnCl4 and Amine ChemInform, 2004, 35, no.	0.0	0
97	Efficient Intramolecular Diels?Alder Reactions of Ester-Tethered 1,7,9-Decatrienoates Catalyzed by Bis-Aluminated Trifluoromethanesulfonamide ChemInform, 2005, 36, no.	0.0	O
98	Bis-Aluminated Triflic Amide Promoted Diels? Alder Reactions of ?,?-Unsaturated Lactones Chemlnform, 2005, 36, no.	0.0	0
99	Intramolecular Diels—Alder Reaction of α-Fluoroacrylate Derivatives Promoted by Novel Bidentate Aluminum Lewis Acid ChemInform, 2005, 36, no.	0.0	O
100	Chromium-Mediated Stereoselective Synthesis of (Z)-1-Fluoro-2-alkenyl Alkyl and Trialkylsilyl Ethers from Dibromofluoromethylcarbinyl Ethers ChemInform, 2005, 36, no.	0.0	0
101	Intramolecular Diels—Alder Reaction of 1,7,9-Decatrienoates Catalyzed by Indium(III) Trifluoromethanesulfonate in Aqueous Media ChemInform, 2005, 36, no.	0.0	О
102	Chromium-Mediated Fluoroalkenylation Reactions of 1,1-Dibromo-1-fluoroalkane and 1-Bromo-1-fluoroalkene Derivatives ChemInform, 2005, 36, no.	0.0	0
103	Frontispiece: Iodonium Salts as Benzyne Precursors. Chemistry - A European Journal, 2018, 24, .	3.3	O
104	Metal-Free Synthesis of Heterocycles via Activation of Alkynes by Hypervalent Iodine. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 766-776.	0.1	0