Serge Cosnier

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6362740/serge-cosnier-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17,828 69 107 402 h-index g-index citations papers 6.97 19,182 7.2 423 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
402	Trialkoxyheptazine-Based Glyconanoparticles for Fluorescence in Aqueous Solutions and on Surfaces via Controlled Binding in Space <i>ACS Macro Letters</i> , 2022 , 11, 135-139	6.6	Ο
401	Organic Eyclodextrin Nanoparticle: An Efficient Building Block Between Functionalized Poly(pyrrole) Electrodes and Enzymes <i>Small</i> , 2022 , e2105880	11	0
400	Nitrobenzoic acid-functionalized gold nanoparticles: DET promoter of multicopper oxidases and electrocatalyst for NAD-dependent glucose dehydrogenase. <i>Electrochimica Acta</i> , 2022 , 408, 139894	6.7	1
399	A membraneless starch/O biofuel cell based on bacterial surface regulable displayed sequential enzymes of glucoamylase and glucose dehydrogenase <i>Biosensors and Bioelectronics</i> , 2022 , 207, 11419	7 ^{11.8}	1
398	2-Methylimidazole-tuned A-Selftstrategy based on benzimidazole-5-carboxylate for boosting oxygen reduction electrocatalysis. <i>Applied Surface Science</i> , 2022 , 591, 153066	6.7	O
397	Multi-tailoring of a modified MOF-derived CuO electrochemical transducer for enhanced hydrogen peroxide sensing. <i>Analyst, The</i> , 2021 ,	5	3
396	Functionalizable Glyconanoparticles for a Versatile Redox Platform. <i>Nanomaterials</i> , 2021 , 11,	5.4	4
395	Microcapsule-based biosensor containing catechol for the reagent-free inhibitive detection of benzoic acid by tyrosinase. <i>Biosensors and Bioelectronics</i> , 2021 , 180, 113137	11.8	4
394	Fe-MOGs-based enzyme mimetic and its mediated electrochemiluminescence for in situ detection of HO released from Hela cells. <i>Biosensors and Bioelectronics</i> , 2021 , 184, 113216	11.8	11
393	Insights into carbon nanotube-assisted electro-oxidation of polycyclic aromatic hydrocarbons for mediated bioelectrocatalysis. <i>Chemical Communications</i> , 2021 , 57, 8957-8960	5.8	0
392	Freestanding biopellet electrodes based on carbon nanotubes and protein compression for direct and mediated bioelectrocatalysis. <i>Electrochemistry Communications</i> , 2021 , 122, 106895	5.1	2
391	Wearable Biosupercapacitor: Harvesting and Storing Energy from Sweat. <i>Advanced Functional Materials</i> , 2021 , 31, 2102915	15.6	16
390	Postmodulation of the Metal-Organic Framework Precursor toward the Vacancy-Rich CuO Transducer for Sensitivity Boost: Synthesis, Catalysis, and HO Sensing. <i>Analytical Chemistry</i> , 2021 , 93, 11066-11071	7.8	2
389	Monofunctional pyrenes at carbon nanotube electrodes for direct electron transfer HO reduction with HRP and HRP-bacterial nanocellulose. <i>Biosensors and Bioelectronics</i> , 2021 , 187, 113304	11.8	6
388	Polymers and nano-objects, a rational combination for developing health monitoring biosensors. <i>Sensors and Actuators B: Chemical</i> , 2021 , 348, 130700	8.5	4
387	Voltammetric sensing of recombinant viral dengue virus 2 NS1 based on Au nanoparticle-decorated multiwalled carbon nanotube composites. <i>Mikrochimica Acta</i> , 2020 , 187, 363	5.8	23
386	Controllable Display of Sequential Enzymes on Yeast Surface with Enhanced Biocatalytic Activity toward Efficient Enzymatic Biofuel Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3222-323	16.4	26

385	ATMP derived cobalt-metaphosphate complex as highly active catalyst for oxygen reduction reaction. <i>Journal of Catalysis</i> , 2020 , 387, 129-137	7.3	16
384	Functionalized tungsten disulfide nanotubes for dopamine and catechol detection in a tyrosinase-based amperometric biosensor design. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3566-3573	7.3	17
383	Enhanced Electrochemiluminescence of Porphyrin-Based Metal-Organic Frameworks Controlled via Coordination Modulation. <i>Analytical Chemistry</i> , 2020 , 92, 1916-1924	7.8	13
382	Functionalization of Contacted Carbon Nanotube Forests by Dip Coating for High-Performance Biocathodes. <i>ChemElectroChem</i> , 2020 , 7, 4685-4689	4.3	1
381	Postsynthesis Ligand Exchange Induced Porphyrin Hybrid Crystalloid Reconstruction for Self-Enhanced Electrochemiluminescence. <i>Analytical Chemistry</i> , 2020 , 92, 15270-15274	7.8	2
3 80	Diazonium Electrografting vs. Physical Adsorption of Azure A at Carbon Nanotubes for Mediated Glucose Oxidation with FAD-GDH. <i>ChemElectroChem</i> , 2020 , 7, 4543-4549	4.3	9
379	A bifunctional triblock polynorbornene/carbon nanotube buckypaper bioelectrode for low-potential/high-current thionine-mediated glucose oxidation by FAD-GDH. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1447-1450	13	11
378	Self-assembled meso-tetra(4-carboxyphenyl)porphine: Structural modulation using surfactants for enhanced photoelectrochemical properties. <i>Electrochimica Acta</i> , 2019 , 299, 560-566	6.7	3
377	A Diethyleneglycol-Pyrene-Modified Ru(II) Catalyst for the Design of Buckypaper Bioelectrodes and the Wiring of Glucose Dehydrogenases. <i>ChemElectroChem</i> , 2019 , 6, 3621-3626	4.3	8
376	Tackling the Challenges of Enzymatic (Bio)Fuel Cells. <i>Chemical Reviews</i> , 2019 , 119, 9509-9558	68.1	207
376 375	Tackling the Challenges of Enzymatic (Bio)Fuel Cells. <i>Chemical Reviews</i> , 2019 , 119, 9509-9558 ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor. <i>Biosensors and Bioelectronics</i> , 2019 , 143, 111601	68.1	207 16
	ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced		
375	ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor. <i>Biosensors and Bioelectronics</i> , 2019 , 143, 111601 Uniform and Easy-To-Prepare Glycopolymer-Brush Interface for Rapid Protein (Anti-)Adhesion	11.8	16
375 374	ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor. <i>Biosensors and Bioelectronics</i> , 2019 , 143, 111601 Uniform and Easy-To-Prepare Glycopolymer-Brush Interface for Rapid Protein (Anti-)Adhesion Sensing. <i>ACS Applied Materials & Discopolymer Sensing</i> , 11, 32366-32372 A Nanotube-Supported Dicopper Complex Enhances Pt-free Molecular H2/Air Fuel Cells. <i>Joule</i> ,	11.8 9.5	16
375 374 373	ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor. <i>Biosensors and Bioelectronics</i> , 2019 , 143, 111601 Uniform and Easy-To-Prepare Glycopolymer-Brush Interface for Rapid Protein (Anti-)Adhesion Sensing. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 32366-32372 A Nanotube-Supported Dicopper Complex Enhances Pt-free Molecular H2/Air Fuel Cells. <i>Joule</i> , 2019 , 3, 2020-2029 Highly active M2P2O7@NC (M = Co and Zn) for bifunctional electrocatalysts for ORR and HER.	11.89.527.8	16 11 19
375 374 373 372	ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor. <i>Biosensors and Bioelectronics</i> , 2019 , 143, 111601 Uniform and Easy-To-Prepare Glycopolymer-Brush Interface for Rapid Protein (Anti-)Adhesion Sensing. <i>ACS Applied Materials & Discoper Complex Enhances</i> , 2019 , 11, 32366-32372 A Nanotube-Supported Dicopper Complex Enhances Pt-free Molecular H2/Air Fuel Cells. <i>Joule</i> , 2019 , 3, 2020-2029 Highly active M2P2O7@NC (M = Co and Zn) for bifunctional electrocatalysts for ORR and HER. <i>Journal of Catalysis</i> , 2019 , 377, 20-27 Stretchable and Flexible Buckypaper-Based Lactate Biofuel Cell for Wearable Electronics. <i>Advanced</i>	11.8 9.5 27.8 7.3 15.6	16 11 19
375 374 373 372 371	ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor. <i>Biosensors and Bioelectronics</i> , 2019 , 143, 111601 Uniform and Easy-To-Prepare Glycopolymer-Brush Interface for Rapid Protein (Anti-)Adhesion Sensing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 32366-32372 A Nanotube-Supported Dicopper Complex Enhances Pt-free Molecular H2/Air Fuel Cells. <i>Joule</i> , 2019 , 3, 2020-2029 Highly active M2P2O7@NC (M = Co and Zn) for bifunctional electrocatalysts for ORR and HER. <i>Journal of Catalysis</i> , 2019 , 377, 20-27 Stretchable and Flexible Buckypaper-Based Lactate Biofuel Cell for Wearable Electronics. <i>Advanced Functional Materials</i> , 2019 , 29, 1905785 Electrosynthesis of Pyrenediones on Carbon Nanotube Electrodes for Efficient Electron Transfer	11.8 9.5 27.8 7.3 15.6	16 11 19 10 81

367	Solubilized Enzymatic Fuel Cell (SEFC) for Quasi-Continuous Operation Exploiting Carbohydrate Block Copolymer Glyconanoparticle Mediators. <i>ACS Energy Letters</i> , 2019 , 4, 142-148	20.1	14
366	POXC Laccase from Pleurotus ostreatus: A High-Performance Multicopper Enzyme for Direct Oxygen Reduction Reaction Operating in a Proton-Exchange Membrane Fuel Cell. <i>ChemElectroChem</i> , 2019 , 6, 1023-1027	4.3	6
365	Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. <i>Biosensors and Bioelectronics</i> , 2018 , 109, 20-26	11.8	44
364	Impedimetric quantification of anti-dengue antibodies using functional carbon nanotube deposits validated with blood plasma assays. <i>Electrochimica Acta</i> , 2018 , 274, 84-90	6.7	22
363	Direct Electrochemistry of Bilirubin Oxidase from Magnaporthe orizae on Covalently-Functionalized MWCNT for the Design of High-Performance Oxygen-Reducing Biocathodes. <i>Chemistry - A European Journal</i> , 2018 , 24, 8404-8408	4.8	23
362	Comparison of Commercial and Lab-made MWCNT Buckypaper: Physicochemical Properties and Bioelectrocatalytic O2 Reduction. <i>Electroanalysis</i> , 2018 , 30, 1511-1520	3	12
361	Oriented Immobilization of [NiFeSe] Hydrogenases on Covalently and Noncovalently Functionalized Carbon Nanotubes for H2/Air Enzymatic Fuel Cells. <i>ACS Catalysis</i> , 2018 , 8, 3957-3964	13.1	51
360	Glucose oxidase bioanodes for glucose conversion and H2O2 production for horseradish peroxidase biocathodes in a flow through glucose biofuel cell design. <i>Journal of Power Sources</i> , 2018 , 392, 176-180	8.9	28
359	Carbon nanotube-based flexible biocathode for enzymatic biofuel cells by spray coating. <i>Journal of Power Sources</i> , 2018 , 408, 1-6	8.9	18
358	DNA-Mediated Nanoscale Metal-Organic Frameworks for Ultrasensitive Photoelectrochemical Enzyme-Free Immunoassay. <i>Analytical Chemistry</i> , 2018 , 90, 12284-12291	7.8	59
357	Towards eco-friendly power sources: In series connected glucose biofuel cells power a disposable ovulation test. <i>Sensors and Actuators B: Chemical</i> , 2018 , 277, 360-364	8.5	10
356	Buckypaper bioelectrodes: emerging materials for implantable and wearable biofuel cells. <i>Energy and Environmental Science</i> , 2018 , 11, 1670-1687	35.4	87
355	Beyond the hype surrounding biofuel cells: What's the future of enzymatic fuel cells?. <i>Current Opinion in Electrochemistry</i> , 2018 , 12, 148-155	7.2	55
354	Polymerization amplified SPR-DNA assay on noncovalently functionalized graphene. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 319-325	11.8	13
353	Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1845-1849	16.4	73
352	Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells. <i>Angewandte Chemie</i> , 2017 , 129, 1871-1875	3.6	12
351	Nanostructured photoactivatable electrode surface based on pyrene diazirine. <i>Electrochemistry Communications</i> , 2017 , 80, 5-8	5.1	7
350	Enhanced Electrochemiluminescence of One-Dimensional Self-Assembled Porphyrin Hexagonal Nanoprisms. <i>ACS Applied Materials & Acs Acc Applied Materials & Acc Acc Acc Acc Acc Acc Acc Acc Acc A</i>	9.5	33

349	In situ formed copper nanoparticles templated by TdT-mediated DNA for enhanced SPR sensor-based DNA assay. <i>Biosensors and Bioelectronics</i> , 2017 , 97, 1-7	11.8	24
348	A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation. <i>ACS Catalysis</i> , 2017 , 7, 4408-4416	13.1	61
347	Controlled carbon nanotube layers for impedimetric immunosensors: High performance label free detection and quantification of anti-cholera toxin antibody. <i>Biosensors and Bioelectronics</i> , 2017 , 97, 177	7-183	27
346	Hydrazine Electrooxidation with PdNPs and Its Application for a Hybrid Self-Powered Sensor and N2H4Decontamination. <i>Journal of the Electrochemical Society</i> , 2017 , 164, H3052-H3057	3.9	8
345	Redox-Active Glyconanoparticles as Electron Shuttles for Mediated Electron Transfer with Bilirubin Oxidase in Solution. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16076-16079	16.4	23
344	Graphene-based Biosensors for Dopamine Determination. <i>Procedia Technology</i> , 2017 , 27, 106-107		10
343	Towards a Versatile Photoreactive Platform for Biosensing Applications. <i>Journal of Analysis and Testing</i> , 2017 , 1, 1	3.2	1
342	Assembly and Stacking of Flow-through Enzymatic Bioelectrodes for High Power Glucose Fuel Cells. <i>ACS Applied Materials & Discrete Mate</i>	9.5	32
341	5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O biofuel cells. <i>Biosensors and Bioelectronics</i> , 2017 , 87, 957-963	11.8	36
340	Flotation Assembly of Large-Area Ultrathin MWCNT Nanofilms for Construction of Bioelectrodes. <i>Nanomaterials</i> , 2017 , 7,	5.4	3
339	Synergetic Effects of Combined Nanomaterials for Biosensing Applications. Sensors, 2017, 17,	3.8	34
338	Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and l-ascorbic acid. <i>Carbon</i> , 2016 , 96, 1034-1042	10.4	145
337	One-pot synthesis of nitrogen-rich carbon dots decorated graphene oxide as metal-free electrocatalyst for oxygen reduction reaction. <i>Carbon</i> , 2016 , 109, 402-410	10.4	79
336	Osmium(II) Complexes Bearing Chelating N-Heterocyclic Carbene and Pyrene-Modified Ligands: Surface Electrochemistry and Electron Transfer Mediation of Oxygen Reduction by Multicopper Enzymes. <i>Organometallics</i> , 2016 , 35, 2987-2992	3.8	19
335	Fluorescent and redox tetrazine films by host-guest immobilization of tetrazine derivatives within poly(pyrrole-Etyclodextrin) films. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 781, 36-40	4.1	11
334	Polyoxometalate [PMo11O39]7 Carbon nanocomposites for sensitive amperometric detection of nitrite. <i>Electrochimica Acta</i> , 2016 , 222, 402-408	6.7	20
333	Zirconium-Based Porphyrinic Metal-Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection. <i>Analytical Chemistry</i> , 2016 , 88, 11207-11212	7.8	106
332	Redox-Active Carbohydrate-Coated Nanoparticles: Self-Assembly of a Cyclodextrin-Polystyrene Glycopolymer with Tetrazine-Naphthalimide. <i>Langmuir</i> , 2016 , 32, 11939-11945	4	17

331	Enzymatic versus Electrocatalytic Oxidation of NADH at Carbon-Nanotube Electrodes Modified with Glucose Dehydrogenases: Application in a Bucky-Paper-Based Glucose Enzymatic Fuel Cell. <i>ChemElectroChem</i> , 2016 , 3, 2058-2062	4.3	14
330	Highly Sensitive Bisphenol-A Electrochemical Aptasensor Based on Poly(Pyrrole-Nitrilotriacetic Acid)-Aptamer Film. <i>Analytical Chemistry</i> , 2016 , 88, 7268-73	7.8	33
329	Robust bifunctional buckypapers from carbon nanotubes and polynorbornene copolymers for flexible engineering of enzymatic bioelectrodes. <i>Carbon</i> , 2016 , 107, 542-547	10.4	19
328	Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations. <i>Journal of Power Sources</i> , 2016 , 325, 252-263	8.9	162
327	Glucose fuel cell based on carbon nanotube-supported pyrenethetalloporphyrin catalysts. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10635-10640	13	26
326	Hosting Adamantane in the Substrate Pocket of Laccase: Direct Bioelectrocatalytic Reduction of O2 on Functionalized Carbon Nanotubes. <i>ACS Catalysis</i> , 2016 , 6, 4259-4264	13.1	47
325	Vibrio cholerae detection: Traditional assays, novel diagnostic techniques and biosensors. <i>TrAC</i> - <i>Trends in Analytical Chemistry</i> , 2016 , 79, 199-209	14.6	17
324	Direct Electron Transfer between a Site-Specific Pyrene-Modified Laccase and Carbon Nanotube/Gold Nanoparticle Supramolecular Assemblies for Bioelectrocatalytic Dioxygen Reduction. <i>ACS Catalysis</i> , 2016 , 6, 1894-1900	13.1	65
323	Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme. <i>Chemistry - A European Journal</i> , 2016 , 22, 10494-500	4.8	48
322	Zirconium-metalloporphyrin frameworks as a three-in-one platform possessing oxygen nanocage, electron media, and bonding site for electrochemiluminescence protein kinase activity assay. <i>Nanoscale</i> , 2016 , 8, 11649-57	7.7	45
321	Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET). <i>Biosensors and Bioelectronics</i> , 2016 , 85, 90-95	11.8	2
320	Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells. <i>Nanoscale</i> , 2016 , 8, 10433-40	7.7	11
319	A label-free photoelectrochemical cocaine aptasensor based on an electropolymerized ruthenium-intercalator complex. <i>Electrochimica Acta</i> , 2016 , 219, 82-87	6.7	8
318	Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. <i>Cellular and Molecular Life Sciences</i> , 2015 , 72, 941-52	10.3	125
317	High performance miniature glucose/O2 fuel cell based on porous silicon anion exchange membrane. <i>Electrochemistry Communications</i> , 2015 , 54, 10-13	5.1	14
316	Laccase wiring on free-standing electrospun carbon nanofibres using a mediator plug. <i>Chemical Communications</i> , 2015 , 51, 14574-7	5.8	11
315	Design of a reduced-graphene-oxide composite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application to dopamine biosensing. <i>Electrochimica Acta</i> , 2015 , 178, 108-112	6.7	49
314	Mass effect of redox reactions: A novel mode for surface plasmon resonance-based bioanalysis. <i>Biosensors and Bioelectronics</i> , 2015 , 74, 183-9	11.8	5

(2014-2015)

313	Biofunctionalizable flexible bucky paper by combination of multi-walled carbon nanotubes and polynorbornene-pyrene [Application to the bioelectrocatalytic reduction of oxygen. <i>Carbon</i> , 2015 , 93, 713-718	10.4	16
312	A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes. <i>Chemical Communications</i> , 2015 , 51, 7447-50	5.8	70
311	A H2/O2 enzymatic fuel cell as a sustainable power for a wireless device. <i>Electrochemistry Communications</i> , 2015 , 60, 216-220	5.1	32
310	Ferrocyanide-Ferricyanide Redox Couple Induced Electrochemiluminescence Amplification of Carbon Dots for Ultrasensitive Sensing of Glutathione. <i>Analytical Chemistry</i> , 2015 , 87, 11150-6	7.8	65
309	Magnetic zirconium hexacyanoferrate(II) nanoparticle as tracing tag for electrochemical DNA assay. <i>Analytical Chemistry</i> , 2015 , 87, 9093-100	7.8	39
308	Simultaneous Determination of Ascorbic and Uric Acids in Urine Using an Innovative Electrochemical Sensor Based on Ecyclodextrin. <i>Analytical Letters</i> , 2015 , 48, 89-99	2.2	8
307	Layer-by-layer scaffold formation using magnetic attraction between HiPCO□ single-walled carbon nanotubes and magnetic nanoparticles: Application for high performance immunosensors. <i>Carbon</i> , 2015 , 81, 731-738	10.4	4
306	Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction. <i>Chemistry - A European Journal</i> , 2015 , 21, 16868-73	4.8	69
305	First Occurrence of Tetrazines in Aqueous Solution: Electrochemistry and Fluorescence. <i>ChemPhysChem</i> , 2015 , 16, 3695-9	3.2	13
304	Freestanding HRPLOX redox buckypaper as an oxygen-reducing biocathode for biofuel cell applications. <i>Energy and Environmental Science</i> , 2015 , 8, 2069-2074	35.4	63
303	One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. <i>Bioelectrochemistry</i> , 2015 , 106, 73-6	5.6	50
302	Biomimetic enzymatic high-potential electrocatalytic reduction of hydrogen peroxide on a functionalized carbon nanotube electrode. <i>Chemical Science</i> , 2015 , 6, 5139-5143	9.4	29
301	Synthesis and electrochemical characterization of original IEMPOI functionalized multiwall carbon nanotube materials: Application to iron (II) detection. <i>Electrochemistry Communications</i> , 2015 , 60, 131-134	5.1	11
300	Ferricyanide confined into the integrative system of pyrrolic surfactant and SWCNTs: The enhanced electrochemial sensing of paracetamol. <i>Electrochimica Acta</i> , 2015 , 186, 16-23	6.7	11
299	Wiring laccase on covalently modified graphene: carbon nanotube assemblies for the direct bio-electrocatalytic reduction of oxygen. <i>Chemistry - A European Journal</i> , 2015 , 21, 3198-201	4.8	40
298	Chemically reduced electrospun polyacrilonitrilellarbon nanotube nanofibers hydrogels as electrode material for bioelectrochemical applications. <i>Carbon</i> , 2015 , 87, 233-238	10.4	24
297	Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2800-3	16.4	158
296	Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. <i>Energy and Environmental Science</i> , 2014 , 7, 1884-1888	35.4	106

295	Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. <i>Electrochemistry Communications</i> , 2014 , 38, 19-23	5.1	217
294	Biofunctionalization of multiwalled carbon nanotubes by electropolymerized poly(pyrrole-concanavalin A) films. <i>Chemistry - A European Journal</i> , 2014 , 20, 13561-4	4.8	9
293	Unusual Fe(CN)[P/II] capture induced by synergic effect of electropolymeric cationic surfactant and graphene: characterization and biosensing application. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 21161-6	9.5	3
292	Permeability improvements of electropolymerized polypyrrole films using dissolvable nano-CaCO3 particle templates. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 5052-5	3.6	2
291	Non-covalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 2228-2232	7.3	38
290	Supramolecular immobilization of bio-entities for bioelectrochemical applications. <i>New Journal of Chemistry</i> , 2014 , 38, 5173-5180	3.6	13
289	Non-covalent double functionalization of carbon nanotubes with a NADH oxidation Ru(II)-based molecular catalyst and a NAD-dependent glucose dehydrogenase. <i>Chemical Communications</i> , 2014 , 50, 11731-4	5.8	39
288	Polypyrrolic bipyridine bis(phenantrolinequinone) Ru(II) complex/carbon nanotube composites for NAD-dependent enzyme immobilization and wiring. <i>Analytical Chemistry</i> , 2014 , 86, 4409-15	7.8	23
287	From gold porphyrins to gold nanoparticles: catalytic nanomaterials for glucose oxidation. <i>Nanoscale</i> , 2014 , 6, 8556-60	7.7	18
286	Electrochemical nanopatterning of an electrogenerated photosensitive poly-[trisbipyridinyl-pyrrole ruthenium(II)] metallopolymer by nanosphere lithography. <i>Electrochemistry Communications</i> , 2014 , 46, 75-78	5.1	10
285	Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer. <i>Chemical Science</i> , 2014 , 5, 2885-28	888 ⁴	43
284	Biopolymeric receptor for peptide recognition by molecular imprinting approachsynthesis, characterization and application. <i>Materials Science and Engineering C</i> , 2014 , 45, 383-94	8.3	12
283	Electroanalytical Sensing Properties of Pristine and Functionalized Multilayer Graphene. <i>Chemistry of Materials</i> , 2014 , 26, 1807-1812	9.6	40
282	Graphene/clay composite electrode formed by exfoliating graphite with Laponite for simultaneous determination of ascorbic acid, dopamine, and uric acid. <i>Monatshefte Fil Chemie</i> , 2014 , 145, 1389-1394	1.4	8
281	MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells. <i>Journal of Power Sources</i> , 2014 , 255, 24-28	8.9	31
2 80	Micro- to nanostructured poly(pyrrole-nitrilotriacetic acid) films via nanosphere templates: applications to 3D enzyme attachment by affinity interactions. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 1141-7	4.4	18
279	Enzymatic Fuel Cells: From Design to Implantation in Mammals 2014 , 347-362		2
278	Label-free photoelectrochemical detection of double-stranded HIV DNA by means of a metallointercalator-functionalized electrogenerated polymer. <i>Chemistry - A European Journal</i> , 2014 , 20, 15555-60	4.8	15

277	Nanomaterials for biosensing applications: a review. Frontiers in Chemistry, 2014, 2, 63	5	587
276	Recent advances in carbon nanotube-based enzymatic fuel cells. <i>Frontiers in Bioengineering and Biotechnology</i> , 2014 , 2, 45	5.8	62
275	Nanotubes and nanoparticles based 3D scaffolds for the construction of high performance Biosensors. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1700, 97-102		
274	Carbon Nanotube Matrices for Enzymatic Glucose Biofuel Cells: Shapes and Growth 2014 , 1-10		1
273	Biofuel Cells 2013 , 409-423		1
272	A Solid-State Electrochemiluminescence Ethanol Biosensor Based on Electrogenerated Poly(pyrrole-tris(2,2?-bipyridyl)ruthenium(II)) Film/Alcohol Dehydrogenase/Laponite Composite. <i>Electroanalysis</i> , 2013 , 25, 697-702	3	7
271	Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes. <i>Chemical Communications</i> , 2013 , 49, 9281-3	5.8	73
270	A biosensing application based on quenching the enhanced electrochemiluminescence of poly[tris(N-bipyridylethyl)pyrrole] ruthenium(II) film by Au nanoparticles. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 692, 60-65	4.1	6
269	Flexible metallization of electrospun nanofibers: Dramatically enhanced solid-state electrochemistry and electrochemiluminescence of the immobilized tris(2,2?-bipyridyl)ruthenium(II). <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 159-165	8.5	6
268	Impedimetric biosensor for cancer cell detection. <i>Electrochemistry Communications</i> , 2013 , 37, 36-39	5.1	27
267	Voltammetric detection of heparin based on anion exchange at electropolymeric film of pyrrole-alkylammonium cationic surfactant and MWCNTs composite. <i>Electrochemistry Communications</i> , 2013 , 34, 339-343	5.1	21
266	Single glucose biofuel cells implanted in rats power electronic devices. <i>Scientific Reports</i> , 2013 , 3, 1516	4.9	261
265	Amperometric Sensors 2013 , 115-171		2
264	A double-walled carbon nanotube-based glucose/H2O2 biofuel cell operating under physiological conditions. <i>Electrochemistry Communications</i> , 2013 , 34, 105-108	5.1	46
263	Enhanced electrochemiluminescence of peroxydisulfate by electrodeposited Au nanoparticles and its biosensing application via integrating biocatalytic precipitation using self-assembly bi-enzymes. Journal of Electroanalytical Chemistry, 2013, 703, 9-13	4.1	10
262	Electrogenerated trisbipyridyl Ru(II)-/nitrilotriacetic-polypyrene copolymer for the easy fabrication of label-free photoelectrochemical immunosensor and aptasensor: application to the determination of thrombin and anti-cholera toxin antibody. <i>Biosensors and Bioelectronics</i> , 2013 , 42, 556	11.8 - 62	50
261	Nanomaterials for Enzyme Biofuel Cells 2013 , 49-66		
2 60	Supramolecular immobilization of laccase on carbon nanotube electrodes functionalized with (methylpyrenylaminomethyl)anthraquinone for direct electron reduction of oxygen. <i>Chemistry - A European Journal</i> , 2013 , 19, 9371-5	4.8	68

259	High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 4892-6	3.6	138
258	A pyrene-substituted tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes. <i>Langmuir</i> , 2013 , 29, 8736-42	4	46
257	3D-nanostructured scaffold electrodes based on single-walled carbon nanotubes and nanodiamonds for high performance biosensors. <i>Carbon</i> , 2013 , 61, 349-356	10.4	18
256	Label-free impedimetric thrombin sensor based on poly(pyrrole-nitrilotriacetic acid)-aptamer film. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 90-5	11.8	67
255	TiO2 nanocrystals electrochemiluminescence quenching by biological enlarged nanogold particles and its application for biosensing. <i>Biosensors and Bioelectronics</i> , 2013 , 39, 342-5	11.8	45
254	High sensitive trypsin activity evaluation applying a nanostructured QCM-sensor. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 862-6	11.8	29
253	Prussian blue-functionalised graphene in the amperometric detection of peroxide and hydrazine 2013 , 01, 58-62		2
252	Multiwalled Carbon Nanotube-CaCO3 Nanoparticle Composites for the Construction of a Tyrosinase-Based Amperometric Dopamine Biosensor. <i>Electroanalysis</i> , 2013 , 25, 613-619	3	23
251	Biofunctionalization of multiwalled carbon nanotubes by irradiation of electropolymerized poly(pyrrole-diazirine) films. <i>Chemistry - A European Journal</i> , 2013 , 19, 9639-43	4.8	15
250	Implantable Glucose BioFuel Cells for Medical Devices. <i>Journal of Physics: Conference Series</i> , 2013 , 476, 012063	0.3	3
249	Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: toward the impedimetric detection of lectins. <i>Frontiers in Chemistry</i> , 2013 , 1, 10	5	5
248	Direct electron transfer between tyrosinase and multi-walled carbon nanotubes for bioelectrocatalytic oxygen reduction. <i>Electrochemistry Communications</i> , 2012 , 20, 19-22	5.1	39
247	Square wave voltammetric determination of trypsin activity. <i>Electrochimica Acta</i> , 2012 , 76, 43-47	6.7	27
246	Dramatically enhanced solid-state electrochemiluminescence of CdTe quantum dots composed with TiO2 nanoparticles. <i>Chemistry - A European Journal</i> , 2012 , 18, 1595-8	4.8	21
245	Enhanced solid-state electrochemiluminescence of Ru(bpy)32+ immobilized on a laponite gel-state network and its glucose biosensing application. <i>RSC Advances</i> , 2012 , 2, 10813	3.7	9
244	Biotin-Etyclodextrin: a new host-guest system for the immobilization of biomolecules. <i>Langmuir</i> , 2012 , 28, 12569-74	4	30
243	Carbon nanotube/enzyme biofuel cells. <i>Electrochimica Acta</i> , 2012 , 82, 179-190	6.7	192
242	An enzymatic biofuel cell based on electrically wired polyphenol oxidase and glucose oxidase operating under physiological conditions. <i>Electrochimica Acta</i> , 2012 , 85, 278-282	6.7	21

241	Glucose biofuel cell construction based on enzyme, graphite particle and redox mediator compression. <i>Sensors and Actuators B: Chemical</i> , 2012 , 173, 760-764	8.5	32
240	In situ synthesis of stable mixed ligand Fe2+ complexes on bipyridinyl functionalized electrodes and nanotube supports. <i>Chemical Communications</i> , 2012 , 48, 6121-3	5.8	5
239	Electrocatalytic oxidation of glucose by rhodium porphyrin-functionalized MWCNT electrodes: application to a fully molecular catalyst-based glucose/O2 fuel cell. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14078-85	16.4	100
238	Solid-State Electrochemiluminescence of F-doped SnO2 Nanocrystals and Its Sensing Application. <i>Electroanalysis</i> , 2012 , 24, 1267-1271	3	12
237	Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films. <i>Analytical Methods</i> , 2012 , 4, 2048	3.2	74
236	Single-walled carbon nanotubes noncovalently functionalized by ruthenium(II) complex tagged with pyrene: electrochemical and electrogenerated chemiluminescence properties. <i>Chemistry - A European Journal</i> , 2012 , 18, 11564-8	4.8	38
235	Electrochemical Sensing of Trypsin Activity. ECS Electrochemistry Letters, 2012, 1, B1-B3		2
234	DMF-exfoliated graphene for electrochemical NADH detection. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 7747-50	3.6	74
233	Electrosynthesized polymers for biosensing. <i>Chemical Society Reviews</i> , 2011 , 40, 2146-56	58.5	132
232	Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. <i>Nature Communications</i> , 2011 , 2, 370	17.4	457
231	Biosensors based on combined optical and electrochemical transduction for molecular diagnostics. <i>Expert Review of Molecular Diagnostics</i> , 2011 , 11, 533-46	3.8	21
230	Multiple functionalization of single-walled carbon nanotubes by dip coating. <i>Chemical Communications</i> , 2011 , 47, 2450-2	5.8	48
229	Enzymatic biosensors based on SWCNT-conducting polymer electrodes. <i>Analyst, The</i> , 2011 , 136, 1279-8	3 7 5	110
228	Hybrid layered double hydroxides-polypyrrole composites for construction of glucose/O2 biofuel cell. <i>Electrochimica Acta</i> , 2011 , 56, 10378-10384	6.7	36
227	Three-dimensional carbon nanotubeBolypyrrole[NiFe] hydrogenase electrodes for the efficient electrocatalytic oxidation of H2. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 12096-12101	6.7	41
226	A quinhydrone biofuel cell based on an enzyme-induced pH gradient. <i>Journal of Power Sources</i> , 2011 , 196, 1329-1332	8.9	7
225	Solid-State Electrochemistry and Electrochemiluminescence of Porous Thin Film of [(2,2?-Bipyridyl)(4-(2-pyrrol-1-ylethyl)-4?-methyl-2,2?-bipyridyl)2]ruthenium(II) Monomer Precipitation. <i>Electroanalysis</i> , 2011 , 23, 1306-1310	3	1
224	A Fast and Direct Amperometric Determination of Hg2+ by a Bienzyme Electrode Based on the Competitive Activities of Glucose Oxidase and Laccase. <i>Electroanalysis</i> , 2011 , 23, 1776-1779	3	11

223	Tris(bispyrene-bipyridine)iron(II): a supramolecular bridge for the biofunctionalization of carbon nanotubes via Estacking and pyrene/Eyclodextrin host-guest interactions. <i>Chemistry - A European Journal</i> , 2011 , 17, 10216-21	4.8	43
222	Photocurrent generation by MWCNTs functionalized with bis-cyclometallated Ir(III)- and trisbipyridyl ruthenium(II)- polypyrrole films. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3910		27
221	Pyrene-adamantane-Ecyclodextrin: An efficient host@uest system for the biofunctionalization of SWCNT electrodes. <i>Carbon</i> , 2011 , 49, 2571-2578	10.4	31
220	Characterization of multi-walled carbon nanotube electrodes functionalized by electropolymerized tris(pyrrole-ether bipyridine) ruthenium (II). <i>Electrochimica Acta</i> , 2011 , 56, 3633-3640	6.7	14
219	Poly(brilliant cresyl blue) electrogenerated on single-walled carbon nanotubes modified electrode and its application in mediated biosensing system. <i>Sensors and Actuators B: Chemical</i> , 2011 , 152, 14-20	8.5	18
218	A glucose biofuel cell implanted in rats. <i>PLoS ONE</i> , 2010 , 5, e10476	3.7	303
217	Label-free femtomolar detection of target DNA by impedimetric DNA sensor based on poly(pyrrole-nitrilotriacetic acid) film. <i>Analytical Chemistry</i> , 2010 , 82, 1066-72	7.8	81
216	Enhanced solid-state electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) incorporated into electrospun nanofibrous mat. <i>Analytical Chemistry</i> , 2010 , 82, 5892-6	7.8	39
215	Electrochemical polymerization of N-substituted pyrrols for the development of novel lactate biosensor. <i>Moscow University Chemistry Bulletin</i> , 2010 , 65, 49-55	0.5	1
214	Pyrene functionalized single-walled carbon nanotubes as precursors for high performance biosensors. <i>Electrochimica Acta</i> , 2010 , 55, 7800-7803	6.7	25
213	A promising biosensing-platform based on bismuth oxide polycrystalline-modified electrode: characterization and its application in development of amperometric glucose sensor. <i>Bioelectrochemistry</i> , 2010 , 79, 218-22	5.6	32
212	Reagentless biosensor for hydrogen peroxide based on self-assembled films of horseradish peroxidase/laponite/chitosan and the primary investigation on the inhibitory effect by sulfide. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 536-41	11.8	43
211	Laccase electrodes based on the combination of single-walled carbon nanotubes and redox layered double hydroxides: Towards the development of biocathode for biofuel cells. <i>Journal of Power Sources</i> , 2010 , 195, 4714-4717	8.9	40
210	Enhanced Direct Electron Transfer of a Multihemic Nitrite Reductase on Single-walled Carbon Nanotube Modified Electrodes. <i>Electroanalysis</i> , 2010 , 22, 2973-2978	3	25
209	Electropolymerized Films of EConjugated Polymers. A Tool for Surface Functionalization: A Brief Historical Evolution and Recent Trends 2010 , 1-26		2
208	Biosensors Based on Electropolymerized Films 2010 , 189-213		7
207	Electrochemistry and electrochemiluminescence for the host@uest system laponiteEris(2,2?-bipyridyl)ruthenium(II). <i>Electrochemistry Communications</i> , 2010 , 12, 227-230	5.1	14
206	An easy compartment-less biofuel cell construction based on the physical co-inclusion of enzyme and mediator redox within pressed graphite discs. <i>Electrochemistry Communications</i> , 2010 , 12, 266-269	5.1	36

(2009-2010)

205	Electrogenerated chemiluminescence of poly[(2,2?-bipyridyl)2]ruthenium (II) film. <i>Electrochemistry Communications</i> , 2010 , 12, 905-908	5.1	11	
204	Colloidal laponite nanoparticles: extended application in direct electrochemistry of glucose oxidase and reagentless glucose biosensing. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1427-33	11.8	52	
203	Electropolymerized biotinylated poly (pyrrolelliologen) film as platform for the development of reagentless impedimetric immunosensors. <i>Electrochemistry Communications</i> , 2010 , 12, 311-314	5.1	12	
202	Electrochromic response and electrochemiluminescence of CdS nanocrystals thin film in aqueous solution. <i>Electrochemistry Communications</i> , 2010 , 12, 713-716	5.1	24	
201	Immobilization of biotinylated biomolecules onto electropolymerized poly(pyrrole-nitrilotriacetic acid) © u2+ film. <i>Electrochemistry Communications</i> , 2010 , 12, 1287-1290	5.1	27	
200	Label-free impedimetric immunosensor for sensitive detection of atrazine. <i>Electrochimica Acta</i> , 2010 , 55, 6228-6232	6.7	57	
199	Current-Free Deposition of Prussian Blue with Organic Polymers: Towards Improved Stability and Mass Production of the Advanced Hydrogen Peroxide Transducer. <i>Electroanalysis</i> , 2009 , 21, 409-414	3	52	
198	Sensitive and selective xanthine amperometric sensors based on calcium carbonate nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2009 , 136, 510-515	8.5	70	
197	The unmediated choline sensor based on layered double hydroxides in hydrogen peroxide detection mode. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 2281-2286		1	
196	Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1451-5	11.8	28	
195	Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: direct electron transfer and multielectrocatalysis. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 3556-61	11.8	40	
194	Direct electrochemistry of hemoglobin in poly(acrylonitrile-co-acrylic acid) and its catalysis to H2O2. <i>Sensors and Actuators B: Chemical</i> , 2009 , 137, 259-265	8.5	32	
193	A new HRP/catalase biosensor based on microconductometric transduction for nitrite determination. <i>Materials Science and Engineering C</i> , 2009 , 29, 1919-1922	8.3	18	
192	Adamantane/beta-cyclodextrin affinity biosensors based on single-walled carbon nanotubes. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1128-34	11.8	84	
191	Development of a high analytical performance-xanthine biosensor based on layered double hydroxides modified-electrode and investigation of the inhibitory effect by allopurinol. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1171-6	11.8	52	
190	Poly(methyl metacrylate) conductive fiber optic transducers as dual biosensor platforms. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 3683-7	11.8	5	
189	Polycrystalline bismuth oxide films for development of amperometric biosensor for phenolic compounds. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 3671-6	11.8	41	
188	Characterization of electrogenerated polypyrrole-benzophenone films coated on poly(pyrrole-methyl metacrylate) optic-conductive fibers. <i>Langmuir</i> , 2009 , 25, 10384-9	4	11	

187	Amperometric biosensor based on the electro-copolymerization of a conductive biotinylated-pyrrole and alginate-pyrrole. <i>Synthetic Metals</i> , 2009 , 159, 1117-1122	3.6	8
186	Non-covalent biofunctionalization of single-walled carbon nanotubes via biotin attachment by Estacking interactions and pyrrole polymerization. <i>Analyst, The,</i> 2009 , 134, 2412-8	5	44
185	Impedimetric immunosensor based on a polypyrrole-antibiotic model film for the label-free picomolar detection of ciprofloxacin. <i>Analytical Chemistry</i> , 2009 , 81, 8405-9	7.8	63
184	Amperometric biosensors based on biotinylated single-walled carbon nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 6042-6	1.3	17
183	Glucose oxidase immobilized in alginate/layered double hydroxides hybrid membrane and its biosensing application. <i>Analytical Sciences</i> , 2009 , 25, 1421-5	1.7	26
182	Electrochemical Characterization of Biotin Functionalized and Regular Single-Walled Carbon Nanotube Coatings. Application to Amperometric Glucose Biosensors. <i>Sensor Letters</i> , 2009 , 7, 801-805	0.9	9
181	Recent advances in DNA sensors. <i>Analyst, The</i> , 2008 , 133, 984-91	5	114
180	Aqueous dispersions of SWCNTs using pyrrolic surfactants for the electro-generation of homogeneous nanotube composites. Application to the design of an amperometric biosensor. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5129		36
179	Detection of carbohydrate-binding proteins by oligosaccharide-modified polypyrrole interfaces using electrochemical surface plasmon resonance. <i>Analyst, The,</i> 2008 , 133, 206-12	5	27
178	ITO pattern fabrication of glass platforms for electropolymerization of light sensitive polymer for its conjugation to bioreceptors on a micro-array. <i>Talanta</i> , 2008 , 75, 564-71	6.2	16
177	Preparation and characterization of a novel pyrrole-benzophenone copolymerized silica nanocomposite as a reagent in a visual immunologic-agglutination test. <i>Talanta</i> , 2008 , 75, 1324-31	6.2	9
176	Immobilization of Biomolecules by Electropolymerized Films 2008,		1
175	Urease-gelatin interdigitated microelectrodes for the conductometric determination of protease activity. <i>Biosensors and Bioelectronics</i> , 2008 , 24, 489-92	11.8	23
174	A highly reversible and sensitive tyrosinase inhibition-based amperometric biosensor for benzoic acid monitoring. <i>Sensors and Actuators B: Chemical</i> , 2008 , 134, 1016-1021	8.5	35
173	Carbon Cavity Microelectrode for Electrical Wiring of Enzyme by Insoluble Electroactive Species in Aqueous Media. <i>Electroanalysis</i> , 2008 , 20, 750-756	3	6
172	Urease immobilization on biotinylated polypyrrole coated ChemFEC devices for urea biosensor development. <i>Irbm</i> , 2008 , 29, 192-201	4.8	7
171	Electrogeneration of polymer films functionalized by fluoroquinolone models for the development of antibiotic immunosensor. <i>Irbm</i> , 2008 , 29, 181-186	4.8	2
170	Electrochemical nitrate biosensor based on poly(pyrrole-viologen) film-nitrate reductase-clay composite. <i>Bioelectrochemistry</i> , 2008 , 74, 47-51	5.6	44

169	Electrochemical fabrication of novel fluorescent polymeric film: Poly(pyrrolepyrene). <i>Electrochemistry Communications</i> , 2008 , 10, 1423-1426	5.1	18
168	Design of carbon nanotube-polymer frameworks by electropolymerization of SWCNT-pyrrole derivatives. <i>Electrochimica Acta</i> , 2008 , 53, 3948-3954	6.7	30
167	Characterization of thin poly(pyrrole-benzophenone) film morphologies electropolymerized on indium tin oxide coated optic fibers for electrochemical and optical biosensing. <i>Electrochimica Acta</i> , 2008 , 53, 5128-5135	6.7	18
166	A new approach for nitrite determination based on a HRP/catalase biosensor. <i>Materials Science and Engineering C</i> , 2008 , 28, 726-730	8.3	30
165	Design of new electropolymerized polypyrrole films of polyfluorinated Zn(II) and Mn(III) porphyrins: Towards electrochemical sensors. <i>Materials Science and Engineering C</i> , 2008 , 28, 731-738	8.3	14
164	The limiting performance characteristics in bioelectrocatalysis of hydrogenase enzymes. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7244-6	16.4	46
163	The Limiting Performance Characteristics in Bioelectrocatalysis of Hydrogenase Enzymes. <i>Angewandte Chemie</i> , 2007 , 119, 7382-7384	3.6	13
162	Rutin Determination at an Amperometric Biosensor. <i>Electroanalysis</i> , 2007 , 19, 253-258	3	25
161	Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: calcium carbonate nanoparticles. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 1612-7	11.8	132
160	Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 1733-8	11.8	80
159	Electrogenerated indium tin oxide-coated glass surface with photosensitive interfaces: surface analysis. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 2230-6	11.8	15
158	Calcium carbonate nanoparticles: a host matrix for the construction of highly sensitive amperometric phenol biosensor. <i>Biosensors and Bioelectronics</i> , 2007 , 23, 648-54	11.8	60
157	Direct electrochemistry and electrocatalysis of hemoglobin entrapped in composite matrix based on chitosan and CaCO3 nanoparticles. <i>Electrochemistry Communications</i> , 2007 , 9, 529-534	5.1	119
156	Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. <i>Electrochemistry Communications</i> , 2007 , 9, 2240-2245	5.1	74
155	Amperometric immunosensor for the detection of anti-West Nile virus IgG using a photoactive copolymer. <i>Enzyme and Microbial Technology</i> , 2007 , 40, 403-408	3.8	18
154	Comparative study between organic and inorganic entrapment matrices for urease biosensor development. <i>Sensors and Actuators B: Chemical</i> , 2007 , 123, 671-679	8.5	33
153	Amperometric phenol biosensor based on laponite clay-chitosan nanocomposite matrix. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 816-21	11.8	101
152	Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic. <i>Biosensors and Bioelectronics</i> , 2007 , 23, 549-55	11.8	72

151	Development of a highly sensitive, field operable biosensor for serological studies of Ebola virus in central Africa. <i>Sensors and Actuators B: Chemical</i> , 2007 , 122, 578-586	8.5	40
150	Chapter 18 Immunosensors for clinical and environmental applications based on electropolymerized films: analysis of cholera toxin and hepatitis C virus antibodies in water and serum. <i>Comprehensive Analytical Chemistry</i> , 2007 , 49, 381-402	1.9	
149	Procedure 26 Construction of amperometric immunosensors for the analysis of cholera antitoxin and comparison of the performances between three different enzyme markers. <i>Comprehensive Analytical Chemistry</i> , 2007 , e185-e194	1.9	1
148	Recent Advances in Biological Sensors Based on Electrogenerated Polymers: A Review. <i>Analytical Letters</i> , 2007 , 40, 1260-1279	2.2	76
147	Hybrid material based on chitosan and layered double hydroxides: characterization and application to the design of amperometric phenol biosensor. <i>Biomacromolecules</i> , 2007 , 8, 971-5	6.9	90
146	Amperometric immunosensor for the detection of anti-West Nile virus IgG. <i>Analytical Chemistry</i> , 2007 , 79, 8662-8	7.8	55
145	Self-assembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide. <i>Biomacromolecules</i> , 2007 , 8, 3041-6	6.9	55
144	Entrapment of enzyme within organic and inorganic materials for biosensor applications: Comparative study. <i>Materials Science and Engineering C</i> , 2006 , 26, 442-447	8.3	62
143	Amperometric Algal Chlorella vulgaris Cell Biosensors Based on Alginate and Polypyrrole-Alginate Gels. <i>Electroanalysis</i> , 2006 , 18, 1041-1046	3	59
142	Photoelectrochemical immunosensor for label-free detection and quantification of anti-cholera toxin antibody. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9693-8	16.4	257
142		8.3	² 57
	toxin antibody. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9693-8 A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of	· ·	<i>31</i>
141	toxin antibody. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9693-8 A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of proteins on electrode surfaces. <i>Materials Science and Engineering C</i> , 2006 , 26, 436-441 Electroenzymatic polypyrrole-intercalator sensor for the determination of West Nile virus cDNA.	8.3	5
141	toxin antibody. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9693-8 A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of proteins on electrode surfaces. <i>Materials Science and Engineering C</i> , 2006 , 26, 436-441 Electroenzymatic polypyrrole-intercalator sensor for the determination of West Nile virus cDNA. <i>Analytical Chemistry</i> , 2006 , 78, 7054-7 Specific determination of As(V) by an acid phosphatase-polyphenol oxidase biosensor. <i>Analytical</i>	8.3 7.8 7.8	5
141 140 139	A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of proteins on electrode surfaces. <i>Materials Science and Engineering C</i> , 2006 , 26, 436-441 Electroenzymatic polypyrrole-intercalator sensor for the determination of West Nile virus cDNA. <i>Analytical Chemistry</i> , 2006 , 78, 7054-7 Specific determination of As(V) by an acid phosphatase-polyphenol oxidase biosensor. <i>Analytical Chemistry</i> , 2006 , 78, 4985-9	8.3 7.8 7.8	5 30 74
141 140 139	A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of proteins on electrode surfaces. <i>Materials Science and Engineering C</i> , 2006 , 26, 436-441 Electroenzymatic polypyrrole-intercalator sensor for the determination of West Nile virus cDNA. <i>Analytical Chemistry</i> , 2006 , 78, 7054-7 Specific determination of As(V) by an acid phosphatase-polyphenol oxidase biosensor. <i>Analytical Chemistry</i> , 2006 , 78, 4985-9 Tolerance to oxygen of hydrogen enzyme electrodes. <i>Electrochemistry Communications</i> , 2006 , 8, 851-85 A polypyrrole cDNA electrode for the amperometric detection of the West Nile Virus.	8.3 7.8 7.8 54.1	5 30 74 33
141 140 139 138	A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of proteins on electrode surfaces. <i>Materials Science and Engineering C</i> , 2006 , 26, 436-441 Electroenzymatic polypyrrole-intercalator sensor for the determination of West Nile virus cDNA. <i>Analytical Chemistry</i> , 2006 , 78, 7054-7 Specific determination of As(V) by an acid phosphatase-polyphenol oxidase biosensor. <i>Analytical Chemistry</i> , 2006 , 78, 4985-9 Tolerance to oxygen of hydrogen enzyme electrodes. <i>Electrochemistry Communications</i> , 2006 , 8, 851-85 A polypyrrole cDNA electrode for the amperometric detection of the West Nile Virus. <i>Electrochemistry Communications</i> , 2006 , 8, 1741-1748	7.8 7.8 545.1	5 30 74 33 36

(2004-2005)

133	Electrogeneration of a poly(pyrrole)-NTA chelator film for a reversible oriented immobilization of histidine-tagged proteins. <i>Journal of the American Chemical Society</i> , 2005 , 127, 5752-3	16.4	100
132	Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen. <i>Analytical Chemistry</i> , 2005 , 77, 1771-9	7.8	83
131	Synthesis and characterization of a pyrrole-alginate conjugate and its application in a biosensor construction. <i>Biomacromolecules</i> , 2005 , 6, 3313-8	6.9	78
130	Hydrogenase electrodes for fuel cells. <i>Biochemical Society Transactions</i> , 2005 , 33, 73-5	5.1	55
129	Improved enzyme retention from an electropolymerized polypyrrole-alginate matrix in the development of biosensors. <i>Electrochemistry Communications</i> , 2005 , 7, 1277-1282	5.1	43
128	Organic phase PPO biosensor based on hydrophilic films of electropolymerized polypyrrole. <i>Electrochimica Acta</i> , 2005 , 50, 3713-3718	6.7	21
127	Insulator semiconductor structures coated with biodegradable latexes as encapsulation matrix for urease. <i>Biosensors and Bioelectronics</i> , 2005 , 20, 2318-23	11.8	19
126	MercuryBnzyme inhibition assays with an amperometric sucrose biosensor based on a trienzymatic-clay matrix. <i>Analytica Chimica Acta</i> , 2005 , 543, 143-149	6.6	60
125	Electrogeneration and characterization of photoactivable films and their application for enzyme grafting. <i>Electrochemistry Communications</i> , 2005 , 7, 808-814	5.1	18
124	Affinity Biosensors Based on Electropolymerized Films. <i>Electroanalysis</i> , 2005 , 17, 1701-1715	3	132
124	Affinity Biosensors Based on Electropolymerized Films. <i>Electroanalysis</i> , 2005 , 17, 1701-1715 Recent Advances in Electrochemical and Photochemical Transduction Strategies for Immunosensors Based on Electropolymerized Films 2005 , 165-173	3	132
, i	Recent Advances in Electrochemical and Photochemical Transduction Strategies for	3	132
123	Recent Advances in Electrochemical and Photochemical Transduction Strategies for Immunosensors Based on Electropolymerized Films 2005 , 165-173 Electrodeposited biotinylated polypyrrole as an immobilization method for impedimetric		
123	Recent Advances in Electrochemical and Photochemical Transduction Strategies for Immunosensors Based on Electropolymerized Films 2005 , 165-173 Electrodeposited biotinylated polypyrrole as an immobilization method for impedimetric immunosensors. <i>IEEE Sensors Journal</i> , 2004 , 4, 559-567 Construction of amperometric immunosensors based on the electrogeneration of a permeable	4	18
123	Recent Advances in Electrochemical and Photochemical Transduction Strategies for Immunosensors Based on Electropolymerized Films 2005 , 165-173 Electrodeposited biotinylated polypyrrole as an immobilization method for impedimetric immunosensors. <i>IEEE Sensors Journal</i> , 2004 , 4, 559-567 Construction of amperometric immunosensors based on the electrogeneration of a permeable biotinylated polypyrrole film. <i>Analytical Chemistry</i> , 2004 , 76, 6808-13 HRP/[Zn-Cr-ABTS] redox clay-based biosensor: design and optimization for cyanide detection.	4 7.8	18 71
123 122 121	Recent Advances in Electrochemical and Photochemical Transduction Strategies for Immunosensors Based on Electropolymerized Films 2005, 165-173 Electrodeposited biotinylated polypyrrole as an immobilization method for impedimetric immunosensors. <i>IEEE Sensors Journal</i> , 2004, 4, 559-567 Construction of amperometric immunosensors based on the electrogeneration of a permeable biotinylated polypyrrole film. <i>Analytical Chemistry</i> , 2004, 76, 6808-13 HRP/[Zn-Cr-ABTS] redox clay-based biosensor: design and optimization for cyanide detection. <i>Biosensors and Bioelectronics</i> , 2004, 20, 390-6 Organic Phase PPO Biosensors Prepared by Multilayer Deposition of Enzyme and Alginate Through	7.8	18 71 73
123 122 121 120	Recent Advances in Electrochemical and Photochemical Transduction Strategies for Immunosensors Based on Electropolymerized Films 2005, 165-173 Electrodeposited biotinylated polypyrrole as an immobilization method for impedimetric immunosensors. <i>IEEE Sensors Journal</i> , 2004, 4, 559-567 Construction of amperometric immunosensors based on the electrogeneration of a permeable biotinylated polypyrrole film. <i>Analytical Chemistry</i> , 2004, 76, 6808-13 HRP/[Zn-Cr-ABTS] redox clay-based biosensor: design and optimization for cyanide detection. <i>Biosensors and Bioelectronics</i> , 2004, 20, 390-6 Organic Phase PPO Biosensors Prepared by Multilayer Deposition of Enzyme and Alginate Through Avidin-Biotin Interactions. <i>Electroanalysis</i> , 2004, 16, 2022-2029 An efficient poly(pyrroleQiologen)-nitrite reductase biosensor for the mediated detection of	7.8 11.8	18 71 73 16

115	Biotinylated polypyrrole films: an easy electrochemical approach for the reagentless immobilization of bacteria on electrode surfaces. <i>Bioelectrochemistry</i> , 2004 , 63, 297-301	5.6	34
114	New flavin and deazaflavin oligonucleotide conjugates for the amperometric detection of DNA hybridization. <i>Chemical Communications</i> , 2004 , 1624-5	5.8	6
113	A new biotinylated tris bipyridinyl iron(II) complex as redox biotin-bridge for the construction of supramolecular biosensing architectures. <i>Chemical Communications</i> , 2004 , 324-5	5.8	14
112	Electrogeneration of a biotinylated poly(pyrrole-ruthenium(II)) film for the construction of photoelectrochemical immunosensor. <i>Chemical Communications</i> , 2004 , 2472-3	5.8	42
111	Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors. <i>Journal of Materials Chemistry</i> , 2004 , 14, 807-810		80
110	Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors. <i>Analytical Chemistry</i> , 2004 , 76, 178-83	7.8	282
109	HRP Wiring by Redox Active Layered Double Hydroxides: Application to the Mediated H2O2 Detection. <i>Analytical Letters</i> , 2003 , 36, 909-922	2.2	39
108	A poly(pyrrole-Cobalt(II)deuteroporphyrin) electrode for the potentiometric determination of nitrite. <i>Sensors</i> , 2003 , 3, 213-222	3.8	25
107	Biosensors based on electropolymerized films: new trends. <i>Analytical and Bioanalytical Chemistry</i> , 2003 , 377, 507-20	4.4	232
106	Synthesis and Electrochemical Characterization of a New Electropolymerizable Hydrophilic Viologen Designed for Enzyme Wiring. <i>Mikrochimica Acta</i> , 2003 , 143, 139-145	5.8	6
105	A New Polyphenol Oxidase Biosensor Mediated by Azure B in Laponite Clay Matrix. <i>Electroanalysis</i> , 2003 , 15, 1506-1512	3	47
104	A permselective biotinylated polydicarbazole film for the fabrication of amperometric enzyme electrodes. <i>Electrochemistry Communications</i> , 2003 , 5, 973-977	5.1	30
103	Use of competitive inhibition for driving sensitivity and dynamic range of urea ENFETs. <i>Biosensors and Bioelectronics</i> , 2003 , 18, 345-51	11.8	18
102	Development of an "electroptode" immunosensor: indium tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated cholera toxin B subunit. <i>Analytical Chemistry</i> , 2003 , 75, 2633-9	7.8	65
101	Composite carbon paste biosensor for phenolic derivatives based on in situ electrogenerated polypyrrole binder. <i>Analytical Chemistry</i> , 2003 , 75, 5422-8	7.8	45
100	Layered double hydroxides: an attractive material for electrochemical biosensor design. <i>Analytical Chemistry</i> , 2003 , 75, 3872-9	7.8	185
99	Dismutation of Hydrogen Peroxide from Water Medium by Catalytic Reactive Membrane Immobilizing Peroxidase and Catalase by Molecular Recognition Process. <i>Separation Science and Technology</i> , 2003 , 38, 1291-1306	2.5	6
98	An electrogenerated poly(pyrrole-benzophenone) film for the photografting of proteins. <i>Chemical Communications</i> , 2003 , 414-5	5.8	29

(2001-2002)

97	An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly(pyrrole-biotin). <i>Analytical and Bioanalytical Chemistry</i> , 2002 , 374, 1056-63	4.4	27
96	Indium tin oxide-coated optical fiber tips for affinity electropolymerization. <i>Materials Science and Engineering C</i> , 2002 , 21, 189-194	8.3	28
95	Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase. <i>Electrochemistry Communications</i> , 2002 , 4, 417-420	5.1	57
94	Electrogeneration and characterization of a poly(pyrroleBickel (II) chlorin) electrode. <i>Electrochemistry Communications</i> , 2002 , 4, 426-430	5.1	16
93	Direct and electrically wired bioelectrocatalysis by hydrogenase from Thiocapsa roseopersicina. <i>Bioelectrochemistry</i> , 2002 , 55, 169-71	5.6	41
92	Impedimetric immunosensor using avidin-biotin for antibody immobilization. <i>Bioelectrochemistry</i> , 2002 , 56, 131-3	5.6	91
91	Bioelectrocatalytic hydrogen production by hydrogenase electrodes. <i>International Journal of Hydrogen Energy</i> , 2002 , 27, 1501-1505	6.7	39
90	Biotinylated alginate immobilization matrix in the construction of an amperometric biosensor: application for the determination of glucose. <i>Analytica Chimica Acta</i> , 2002 , 453, 71-79	6.6	43
89	A composite poly azure BīdlayĒnzyme sensor for the mediated electrochemical determination of phenols. <i>Journal of Electroanalytical Chemistry</i> , 2002 , 537, 103-109	4.1	45
88	Urea biosensors based on immobilization of urease into two oppositely charged clays (laponite and Zn-Al layered double hydroxides). <i>Analytical Chemistry</i> , 2002 , 74, 4037-43	7.8	128
87	A glutathione amperometric biosensor based on an amphiphilic fullerene redox mediator immobilised within an amphiphilic polypyrrole film. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1996-2000		27
86	Fabrication of organic phase biosensors based on multilayered polyphenol oxidase protected by an alginate coating. <i>Electrochemistry Communications</i> , 2001 , 3, 727-732	5.1	27
85	Electrogeneration of a Hydrophilic Cross-Linked Polypyrrole Film for Enzyme Electrode Fabrication. Application to the Amperometric Detection of Glucose. <i>Electroanalysis</i> , 2001 , 13, 186-190	3	34
84	A Polypyrrole-Bienzyme Electrode (Salicylate Hydroxylase-Polyphenol Oxidase) for the Interference-Free Determination of Salicylate. <i>Electroanalysis</i> , 2001 , 13, 906-910	3	21
83	Biotinylated Polypyrrole Modified Quartz Crystal Microbalance for the Fast and Reagentless Determination of Avidin Concentration. <i>Electroanalysis</i> , 2001 , 13, 971-974	3	24
82	Trienzymatic biosensor for the determination of inorganic phosphate. <i>Analytica Chimica Acta</i> , 2001 , 443, 1-8	6.6	58
81	Gold electrode functionalized by electropolymerization of a cyano N-substituted pyrrole: application to an impedimetric immunosensor. <i>Journal of Electroanalytical Chemistry</i> , 2001 , 501, 62-69	4.1	68
8o	CONTROLLED FABRICATION OF GLUCOSE AND CATECHOL MICROBIOSENSORS VIA ELECTROPOLYMERIZED BIOTINYLATED POLYPYRROLE FILMS. <i>Analytical Letters</i> , 2001 , 34, 61-70	2.2	14

79	Elaboration and characterization of spatially controlled assemblies of complementary polyphenol oxidase-alkaline phosphatase activities on electrodes. <i>Analytical Chemistry</i> , 2001 , 73, 2890-7	7.8	41
78	Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes. <i>Journal of Proteomics</i> , 2001 , 50, 65-77		46
77	A comparative physical study of two different hydrophilic synthetic latex matrices for the construction of a glucose biosensor. <i>Talanta</i> , 2001 , 55, 889-97	6.2	32
76	A comparison of amperometric screen-printed, carbon electrodes and their application to the analysis of phenolic compounds present in beers. <i>Talanta</i> , 2001 , 55, 1015-27	6.2	39
75	Amperometric Glucose Biosensors Based on Composite Polymeric Structures to Prevent Interferences. <i>Analytical Letters</i> , 2000 , 33, 1733-1753	2.2	12
74	A Composite Clay Glucose Biosensor Based on an Electrically Connected HRP. <i>Electroanalysis</i> , 2000 , 12, 356-360	3	38
73	Electrogenerated Poly(Chiral Dicarbazole) Films for the Reagentless Grafting of Enzymes. <i>Electroanalysis</i> , 2000 , 12, 1107-1112	3	19
72	Poly(pyrrolefhetallodeuteroporphyrin)electrodes: towards electrochemical biomimetic devices. Journal of Electroanalytical Chemistry, 2000 , 488, 83-91	4.1	43
71	Novel electro-oxidizable chiral N-substituted dicarbazoles and resulting electroactive films for covalent attachment of proteins. <i>Tetrahedron Letters</i> , 2000 , 41, 3725-3729	2	26
70	Poly(dicarbazole-N-hydroxysuccinimide) film: a new polymer for the reagentless grafting of enzymes and redox mediators. <i>Electrochemistry Communications</i> , 2000 , 2, 827-831	5.1	23
69	A rapid and easy procedure of biosensor fabrication by micro-encapsulation of enzyme in hydrophilic synthetic latex films. Application to the amperometric determination of glucose. <i>Electrochemistry Communications</i> , 2000 , 2, 851-855	5.1	32
68	A membrane based reactor with an enzyme immobilized by an avidinBiotin molecular recognition in a polymer matrix. <i>Journal of Membrane Science</i> , 2000 , 176, 169-176	9.6	27
67	Biosensors based on immobilization of biomolecules by electrogenerated polymer films. New perspectives. <i>Applied Biochemistry and Biotechnology</i> , 2000 , 89, 127-38	3.2	69
66	A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide. <i>Journal of Electroanalytical Chemistry</i> , 1999 , 469, 176-181	4.1	132
65	Association of a poly(4-vinylpyridine-co-styrene) membrane with an inorganic/organic mixed matrix for the optimization of glucose biosensors. <i>Sensors and Actuators B: Chemical</i> , 1999 , 58, 380-383	8.5	19
64	Development of a PPO-poly(amphiphilic pyrrole) electrode for on site monitoring of phenol in aqueous effluents. <i>Sensors and Actuators B: Chemical</i> , 1999 , 59, 134-139	8.5	57
63	Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. <i>Biosensors and Bioelectronics</i> , 1999 , 14, 443-56	11.8	661
62	Poly(pyrrole B iotin): a new polymer for biomolecule grafting on electrode surfaces. <i>Electrochimica Acta</i> , 1999 , 44, 1833-1836	6.7	65

61	A laponite clay-poly(pyrrolepyridinium) matrix for the fabrication of conductimetric microbiosensors. <i>Analytica Chimica Acta</i> , 1999 , 401, 117-124	6.6	43
60	A biotinylated conducting polypyrrole for the spatially controlled construction of an amperometric biosensor. <i>Analytical Chemistry</i> , 1999 , 71, 3692-7	7.8	105
59	Functionalized polypyrroles: a sophisticated glue for the immobilization and electrical wiring of enzymes. <i>Synthetic Metals</i> , 1999 , 102, 1366-1369	3.6	11
58	A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip. <i>Talanta</i> , 1999 , 50, 219-26	6.2	75
57	Fabrication of biosensors by attachment of biological macromolecules to electropolymerized conducting films. <i>Analusis - European Journal of Analytical Chemistry</i> , 1999 , 27, 558-563		27
56	Optimization of an inorganic/bio-organic matrix for the development of new glucose biosensor membranes. <i>Analytica Chimica Acta</i> , 1998 , 364, 165-172	6.6	63
55	Fabrication of amperometric biosensors by entrapment of enzymes in functionalized polypyrrole films. <i>Canadian Journal of Chemical Engineering</i> , 1998 , 76, 1000-1007	2.3	11
54	Synthesis of Vitamin-B12 Derivatives with an Electropolymerizable Side Chain. <i>Helvetica Chimica Acta</i> , 1998 , 81, 1117-1126	2	18
53	A Reagentless Biosensor for the Amperometric Determination of NADH. <i>Electroanalysis</i> , 1998 , 10, 521	-53/5	12
52	Electrogeneration of Biotinylated Functionalized Polypyrroles for the Simple Immobilization of Enzymes. <i>Electroanalysis</i> , 1998 , 10, 808-813	3	78
51	A Poly(pyrrole-copper(II) deuteroporphyrin) Modified Electrode. <i>Journal of Porphyrins and Phthalocyanines</i> , 1998 , 02, 39-43	1.8	17
50	Enhancement of biosensor sensitivity in aqueous and organic solvents using a combination of poly(pyrrole-ammonium) and poly(pyrrole-lactobionamide) films as host matrices <i>Journal of Electroanalytical Chemistry</i> , 1998 , 449, 165-171	4.1	46
49	A Bienzyme Electrode (Alkaline Phosphatase P olyphenol Oxidase) for the Amperometric Determination of Phosphate. <i>Analytical Chemistry</i> , 1998 , 70, 3952-3956	7.8	66
48	An electrochemical method for making enzyme microsensors. Application to the detection of dopamine and glutamate. <i>Analytical Chemistry</i> , 1997 , 69, 968-71	7.8	83
47	Sol © el Derived Composite Materials for the Construction of Oxidase/Peroxidase Mediatorless Biosensors. <i>Chemistry of Materials</i> , 1997 , 9, 1348-1352	9.6	55
46	A Poly(amphiphilic pyrrole)-Flavin Reductase Electrode for Amperometric Determination of Flavins. <i>Analytical Chemistry</i> , 1997 , 69, 3095-9	7.8	26
45	Improvement of poly(amphiphilic pyrrole) enzyme electrodes via the incorporation of synthetic laponite-clay-nanoparticles. <i>Talanta</i> , 1997 , 44, 2209-15	6.2	47
44	Impedimetric measurements on polarized functionalized platinum electrodes: application to direct immunosensing. <i>Materials Science and Engineering C</i> , 1997 , 5, 111-119	8.3	29

43	New electropolymerizable amphiphilic viologens for the immobilization and electrical wiring of a nitrate reductase. <i>Journal of Electroanalytical Chemistry</i> , 1997 , 433, 113-119	4.1	61
42	An original electroenzymatic system: Flavin reductase-riboflavin for the improvement of dehydrogenase-based biosensors. Application to the amperometric detection of lactate. <i>Electroanalysis</i> , 1997 , 9, 685-688	3	25
41	Electropolymerization of amphiphilic monomers for designing amperometric biosensors. <i>Electroanalysis</i> , 1997 , 9, 894-902	3	76
40	Peroxidase-glucose oxidase-poly(amphiphilic pyrrole) bioelectrode for selectively mediated amperometric detection of glucose. <i>Electroanalysis</i> , 1997 , 9, 998-1004	3	16
39	Mesoporous TiO2 films: New catalytic electrode fabricating amperometric biosensors based on oxidases. <i>Electroanalysis</i> , 1997 , 9, 1387-1392	3	52
38	Detection of glutamate released by neurons with an enzyme-based microelectrode: applications and limitations. <i>Electrochimica Acta</i> , 1997 , 42, 3217-3223	6.7	18
37	Amperometric detection of pyridine nucleotides via immobilized viologen-accepting pyridine nucleotide oxidoreductase or immobilized diaphorase. <i>Talanta</i> , 1996 , 43, 331-7	6.2	30
36	Polyphenol oxidase-catechol: an electroenzymatic model system for characterizing the performance of matrices for biosensors. <i>Talanta</i> , 1996 , 43, 1615-9	6.2	22
35	Synthesis and Characterization of a New Series of Nickel(II) meso-Tetrakis (polyfluorophenyl)porphyrins Functionalized by Pyrrole Groups and Their Electropolymerized Films. <i>Inorganic Chemistry</i> , 1996 , 35, 2659-2664	5.1	34
34	A new method for the controlled immobilization of enzyme in inorganic gels (laponite) for amperometric glucose biosensing. <i>Sensors and Actuators B: Chemical</i> , 1996 , 33, 44-49	8.5	35
33	Poly(amphiphilic pyrrole)-tyrosinase-peroxidase electrode for amplified flow injection-amperometric detection of phenol. <i>Analytica Chimica Acta</i> , 1996 , 319, 145-151	6.6	63
32	Organosilasesquioxane-laponite clay sols: a versatile approach for electrode surface modification. Journal of Electroanalytical Chemistry, 1996 , 401, 253-256	4.1	15
31	A new strategy for the construction of amperometric dehydrogenase electrodes based on laponite gel-methylene blue polymer as the host matrix. <i>Journal of Electroanalytical Chemistry</i> , 1996 , 406, 243-2	4 4 .1	28
30	Poly (Amphiphilic Pyrr0Le)-PPO Electrodes for Organic-Phase Enzymatic Assay. <i>Analytical Letters</i> , 1995 , 28, 1005-1016	2.2	18
29	Determination of Phenol and Chlorinated Phenolic Compounds Based on a PPO-Bioelectrode and Its Inhibition. <i>Analytical Letters</i> , 1995 , 28, 405-424	2.2	32
28	A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides. <i>Analytica Chimica Acta</i> , 1995 , 311, 255-263	6.6	107
27	Development of amperometric biosensors based on the immobilization of enzymes in polymer films electrogenerated from a series of amphiphilic pyrrole derivatives. <i>Analytica Chimica Acta</i> , 1995 , 311, 23-30	6.6	73
26	Improvement of the analytical characteristics of an enzyme electrode for free and total cholesterol via laponite clay additives. <i>Analytica Chimica Acta</i> , 1995 , 317, 275-280	6.6	62

25	Electrochemically controlled release of chemicals from redox-active polymer films. <i>Journal of Electroanalytical Chemistry</i> , 1994 , 375, 233-241	4.1	12
24	Detection of Galactose and Lactose by a Poly(Amphiphilic Pyrrole)-Galactose Oxidase Electrode. <i>Analytical Letters</i> , 1994 , 27, 1429-1442	2.2	33
23	Amperometric Detection of Nitrate via a Nitrate Reductase Immobilized and Electrically Wired at the Electrode Surface. <i>Analytical Chemistry</i> , 1994 , 66, 3198-3201	7.8	98
22	Controlled electrochemical preparation of enzymatic layers for the design of amperometric biosensors. <i>Electroanalysis</i> , 1993 , 5, 647-652	3	33
21	A new strategy for the construction of a tyrosinase-based amperometric phenol and o-diphenol sensor. <i>Bioelectrochemistry</i> , 1993 , 31, 147-160		110
20	Poly(pyrrole-manganese porphyrin): A catalytic electrode material as a model system for olefin epoxidation and drug metabolism with molecular oxygen. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 352, 181-195	4.1	42
19	Electrochemical properties of [(C5Me5)RhIII(L)Cl]+ complexes (L = 2,2?-bipyridine or 1,10-phenanthroline derivatives) in solution in related polypyrrolic films. Application to electrocatalytic hydrogen generation. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 352, 213-228	4.1	65
18	Poly(Amphiphilic Pyrrole)-Enzyme Electrode: A New Approach for Biosensor Construction 1993 , 231-24	4	1
17	A novel biosensor elaboration by electropolymerization of an adsorbed amphiphilic pyrrole-tyrosinase enzyme layer. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 328, 361-366	4.1	125
16	Immobilization of flavin coenzyme in poly(pyrrole-alkylammonium) and characterization of the resulting bioelectrode. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 338, 339-345	4.1	11
15	Electrocatalytic oxidation of alcohols on carbon electrodes modified by functionalized polypyrrole R uO2 films. <i>Journal of Molecular Catalysis</i> , 1992 , 71, 303-315		13
14	A polypyrrole [RhIIIC5Me5(bpy)Cl]+ modified electrode for the reduction of NAD+ cofactor. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1991 , 315, 307-312		40
13	Controlled permeability of functionalized polypyrrole films by use of different electrolyte anion sizes in the electropolymerization step. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1991 , 310, 71-87		27
12	Triruthenium cluster-polypyrrole films: a remarkably stable immobilized relay at highly positive potentials. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 280, 213-219		31
11	Polypyridinyl complexes of ruthenium(II) having 4,4'-dicarboxy ester-2,2'-bipyridine ligands attached covalently to polypyrrole films. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 285, 133-147		56
10	Alkylammonium and pyridinium group-containing polypyrroles, a new class of electronically conducting anion-exchange polymers. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1989 , 271, 69-81		60
9	Carbon/poly {pyrrole-[(C5Me5)RhIII(bpy)Cl]+} modified electrodes; a molecularly-based material for hydrogen evolution (bpy = 2,2?-bipyridine). <i>Journal of the Chemical Society Chemical Communications</i> , 1989 , 1259-1261		57
8	Electrocatalytic reduction of CO2 on electrodes modified by fac-Re(2,2'-bipyridine)(CO)3Cl complexes bonded to polypyrrole films. <i>Journal of Molecular Catalysis</i> , 1988 , 45, 381-391		77

7	Electropolymerized multilayer and copolymeric structures based on substituted pyrroles. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1988 , 246, 321-335		31	
6	A poly[tris(N-(bipyridylylbutyl)pyrrole)ruthenium(II)]-RuO2 catalytic modified electrode for organic oxidations. <i>Inorganic Chemistry</i> , 1988 , 27, 2389-2390	5.1	33	
5	Etude electrocapillaire de l'adsorption de chlorures d'alkyl-4 pyridine. <i>Electrochimica Acta</i> , 1986 , 31, 121	3.,1 21	184	
4	Electrochemical coating of a platinum electrode by a poly(pyrrole) film containing the fac-Re(2,2?-bipyridine)(CO)3Cl system application to electrocatalytic reduction of CO2. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1986 , 207, 315-321		101	
3	Oxidative electropolymerization of polypyridinyl complexes of ruthenium(II)-containing pyrrole groups. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1985 , 193, 193-204		92	
2	Photoresponse of platinum electrodes coated by electropolymerized polypyridyl complexes of ruthenium(II)-containing pyrrole groups in the presence of an external quencher. Film thickness effect. <i>The Journal of Physical Chemistry</i> , 1985 , 89, 4895-4897		38	
1	Enzymatic Glucose Biofuel Cells: Shapes and Growth of Carbon Nanotube Matrices1-10		1	