Subhamoy Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6362620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A survey of damage observed in Izmir due to 2020 Samos-Izmir earthquake. Natural Hazards, 2022, 111, 1047-1064.	1.6	7
2	Long term effect of operating loads on large monopile-supported offshore wind turbines in sand. Ocean Engineering, 2022, 245, 110404.	1.9	36
3	Buckling analysis of pile foundation in liquefiable soil deposit with sandwiched non-liquefiable layer. Soil Dynamics and Earthquake Engineering, 2022, 154, 107133.	1.9	6
4	Comment on Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14, 4508. Energies, 2022, 15, 971.	1.6	5
5	Load utilisation (LU) ratio of monopiles supporting offshore wind turbines: Formulation and examples from European Wind Farms. Ocean Engineering, 2022, 248, 110798.	1.9	12
6	Liquefaction effects on the fundamental frequency of monopile supported offshore wind turbines (OWTs). Bulletin of Earthquake Engineering, 2022, 20, 3359-3384.	2.3	5
7	Usage of Tyre Derived Aggregates as backfill around buried pipelines crossing strike-slip faults; model tests. Bulletin of Earthquake Engineering, 2022, 20, 3143-3165.	2.3	4
8	Predicting tilting of monopile supported wind turbines during seismic liquefaction. Ocean Engineering, 2022, 252, 111145.	1.9	9
9	Design of monopiles for offshore and nearshore wind turbines in seismically liquefiable soils: Methodology and validation. Soil Dynamics and Earthquake Engineering, 2022, 157, 107252.	1.9	14
10	Experimental investigation of transient bending moment of piles during seismic liquefaction. Soil Dynamics and Earthquake Engineering, 2022, 157, 107251.	1.9	4
11	A 1D-modelling approach for simulating the soil-pile interaction mechanism in the liquefiable ground. Soil Dynamics and Earthquake Engineering, 2022, 158, 107285.	1.9	3
12	Hazard considerations in the vulnerability assessment of offshore wind farms in seismic zones. , 2022, 1, 88-109.		3
13	A Compendium of Formulae for Natural Frequencies of Offshore Wind Turbine Structures. Energies, 2022, 15, 2967.	1.6	3
14	General 3D solution to the free vibration of offshore wind turbines supported on multiple foundations. Marine Structures, 2022, 84, 103227.	1.6	0
15	Simple approach for including foundation–soil–foundation interaction in the static stiffnesses of multi-element shallow foundations. Geotechnique, 2021, 71, 686-699.	2.2	4
16	Rocking isolation of bridge pier using shape memory alloy. Bridge Structures, 2021, 16, 85-103.	0.2	4
17	A shake table investigation of dynamic behavior of pile supported bridges in liquefiable soil deposits. Earthquake Engineering and Engineering Vibration, 2021, 20, 1-24.	1.1	13
18	A general frequency adaptive framework for damped response analysis of wind turbines. Soil Dynamics and Earthquake Engineering, 2021, 143, 106605.	1.9	5

Subhamoy Bhattacharya

#	Article	IF	CITATIONS
19	Physical Modelling of Offshore Wind Turbine Foundations for TRL (Technology Readiness Level) Studies. Journal of Marine Science and Engineering, 2021, 9, 589.	1.2	29
20	Vertical Stiffness Functions of Rigid Skirted Caissons Supporting Offshore Wind Turbines. Journal of Marine Science and Engineering, 2021, 9, 573.	1.2	0
21	On the seismic analysis and design of offshore wind turbines. Soil Dynamics and Earthquake Engineering, 2021, 145, 106692.	1.9	10
22	Seismic Design of Offshore Wind Turbines: Good, Bad and Unknowns. Energies, 2021, 14, 3496.	1.6	19
23	Estimation of the critical buckling load of pile foundations during soil liquefaction. Soil Dynamics and Earthquake Engineering, 2021, 146, 106761.	1.9	14
24	Behaviour of buried continuous pipelines crossing strike-slip faults: Experimental and numerical study. Journal of Natural Gas Science and Engineering, 2021, 92, 103980.	2.1	14
25	Application of controlled-rocking isolation with shape memory alloys for an overpass bridge. Soil Dynamics and Earthquake Engineering, 2021, 149, 106827.	1.9	6
26	Physical modeling of interaction problems in geotechnical engineering. , 2021, , 205-256.		12
27	Numerical models in geotechnics including soil-structure interaction. , 2021, , 429-472.		2
28	Experimental p-y curves for liquefied soils from centrifuge tests. Earthquake Engineering and Engineering Vibration, 2021, 20, 863-876.	1.1	2
29	Support condition monitoring of offshore wind turbines using model updating techniques. Structural Health Monitoring, 2020, 19, 1017-1031.	4.3	24
30	Use of instability curves for the assessment of post-liquefaction stability and deformation of sloping grounds. Engineering Geology, 2020, 265, 105347.	2.9	6
31	Comparative Modal Analysis of Monopile and Jacket Supported Offshore Wind Turbines including Soil-Structure Interaction. International Journal of Structural Stability and Dynamics, 2020, 20, 2042016.	1.5	18
32	Concept design of jacket foundations for offshore wind turbines in 10 steps. Soil Dynamics and Earthquake Engineering, 2020, 139, 106357.	1.9	13
33	Dynamic soil properties and seismic ground response analysis for North Indian seismic belt subjected to the great Himalayan earthquakes. Natural Hazards, 2020, 103, 447-478.	1.6	13
34	Challenges in the Design and Construction of Offshore Wind Turbine Foundations Including Sites in Seismic Areas. Lecture Notes in Civil Engineering, 2020, , 121-160.	0.3	0
35	Seismic risk management of piles in liquefiable soils stabilised with cementation or lattice structures. Geotechnical Research, 2019, 6, 130-143.	0.8	1
36	Simplified Methodology for Stiffness Estimation of Double D Shaped Caisson Foundations. Sustainable Civil Infrastructures, 2019, , 49-62.	0.1	2

Subhamoy Bhattacharya

#	Article	IF	CITATIONS
37	Case Studies of Liquefaction-Induced Damages to Two Pile-Supported River Bridges in China. Journal of Performance of Constructed Facilities, 2019, 33, .	1.0	7
38	Macro- and micro-mechanics of granular soil in asymmetric cyclic loadings encountered by offshore wind turbine foundations. Granular Matter, 2019, 21, 1.	1.1	9
39	Introduction to earthquake geotechnical engineering in relation to foundation design. , 2019, , 1-32.		Ο
40	Basic concepts of engineering seismology and seismic hazard analysis. , 2019, , 33-61.		0
41	Selection of strong motion for foundation design. , 2019, , 63-78.		0
42	Ground response analysis. , 2019, , 79-102.		0
43	Seismic analysis methods related to foundation design. , 2019, , 103-140.		0
44	Liquefaction: theoretical aspects. , 2019, , 141-171.		0
45	Liquefaction: practical aspects. , 2019, , 173-214.		0
46	Analysis and design of shallow foundations. , 2019, , 215-240.		0
47	Pile foundations. , 2019, , 241-295.		0
48	Analysis of foundations for major bridges. , 2019, , 297-330.		0
49	Foundations in slopes and for retaining walls. , 2019, , 331-364.		0
50	Engineering correlations for the design of foundations. , 2019, , 421-450.		0
51	Dynamic design considerations for offshore wind turbine jackets supported on multiple foundations. Marine Structures, 2019, 67, 102631.	1.6	28
52	Seismic behaviour of rocking bridge pier supported by elastomeric pads on pile foundation. Soil Dynamics and Earthquake Engineering, 2019, 124, 98-120.	1.9	17
53	Minimum foundation size and spacing for jacket supported offshore wind turbines considering dynamic design criteria. Soil Dynamics and Earthquake Engineering, 2019, 123, 193-204.	1.9	14
54	Closed-form stiffnesses of multi-bucket foundations for OWT including group effect correction factors. Marine Structures, 2019, 65, 326-342.	1.6	8

#	Article	IF	CITATIONS
55	Dynamic soil properties and liquefaction potential of northeast Indian soil for non-linear effective stress analysis. Bulletin of Earthquake Engineering, 2019, 17, 2899-2933.	2.3	25
56	Inlet and Outlet Pipe Heat Interaction in a Contiguous Flight Auger (CFA) Pile. Springer Series in Geomechanics and Geoengineering, 2019, , 113-122.	0.0	0
57	Methane hydrate as a "new energy― , 2019, , 239-264.		4
58	Wind power: A sustainable way to limit climate change. , 2019, , 333-364.		10
59	Experimental and Field Performance of PP Band–Retrofitted Masonry: Evaluation of Seismic Behavior. Journal of Performance of Constructed Facilities, 2019, 33, .	1.0	15
60	A method to predict the cyclic loading profiles (one-way or two-way) for monopile supported offshore wind turbines. Marine Structures, 2019, 63, 65-83.	1.6	38
61	Impedance Functions for Double-D-Shaped Caisson Foundations. Journal of Testing and Evaluation, 2019, 47, 1900-1919.	0.4	1
62	On the Use of Scaled Model Tests for Analysis and Design of Offshore Wind Turbines. Developments in Geotechnical Engineering, 2018, , 107-129.	0.6	4
63	Earthquake Response Analysis of Sites in State of Haryana using DEEPSOIL Software. Procedia Computer Science, 2018, 125, 357-366.	1.2	26
64	Impedance functions for rigid skirted caissons supporting offshore wind turbines. Ocean Engineering, 2018, 150, 21-35.	1.9	26
65	Simplified load estimation and sizing of suction anchors for spar buoy type floating offshore wind turbines. Ocean Engineering, 2018, 159, 348-357.	1.9	31
66	Review of Liquefaction Around Marine and Pile-Supported Wharf Structures. Lecture Notes in Civil Engineering, 2018, , 893-903.	0.3	0
67	Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10, 333-346.	3.7	34
68	Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records. Soil Dynamics and Earthquake Engineering, 2018, 109, 154-172.	1.9	106
69	Monopile head stiffness for servicibility limit state calculations in assessing the natural frequency of offshore wind turbines. International Journal of Geotechnical Engineering, 2018, 12, 267-283.	1.1	17
70	Geotechnical and infrastructural damage due to the 2016 Kumamoto earthquake sequence. Soil Dynamics and Earthquake Engineering, 2018, 104, 390-394.	1.9	33
71	Identification of transient vibration characteristics of pile-group models during liquefaction using wavelet transform. Engineering Structures, 2018, 171, 712-729.	2.6	13
72	Closed form solution for the first natural frequency of offshore wind turbine jackets supported on multiple foundations incorporating soil-structure interaction. Soil Dynamics and Earthquake Engineering, 2018, 113, 593-613.	1.9	23

#	Article	IF	CITATIONS
73	Experimental and numerical modelling of buried pipelines crossing reverse faults. Soil Dynamics and Earthquake Engineering, 2018, 114, 198-214.	1.9	56
74	Lateral Behavior of Pile Foundations during Partial Liquefaction. , 2018, , .		2
75	The dynamics of an offshore wind turbine using a FE semi-analytical analysis considering the interaction with three soil profiles. , 2018, , 1453-1459.		0
76	Choice of aggregates for permeable pavements based on laboratory tests and DEM simulations. International Journal of Pavement Engineering, 2017, 18, 160-168.	2.2	9
77	Effect of initial relative density on the post-liquefaction behaviour of sand. Soil Dynamics and Earthquake Engineering, 2017, 97, 25-36.	1.9	35
78	Scenario based seismic re-qualification of caisson supported major bridges – A case study of Saraighat Bridge. Soil Dynamics and Earthquake Engineering, 2017, 100, 270-275.	1.9	26
79	A practical method for construction of p-y curves for liquefiable soils. Soil Dynamics and Earthquake Engineering, 2017, 97, 478-481.	1.9	50
80	Construction of simplified design <i>p</i> – <i>y</i> curves for liquefied soils. Geotechnique, 2017, 67, 216-227.	2.2	48
81	Proposed mechanism for mid-span failure of pile supported river bridges during seismic liquefaction. Soil Dynamics and Earthquake Engineering, 2017, 102, 41-45.	1.9	20
82	Dynamic soil properties for seismic ground response studies in Northeastern India. Soil Dynamics and Earthquake Engineering, 2017, 100, 357-370.	1.9	41
83	Serviceability of suction caisson founded offshore structures. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2017, 170, 273-284.	0.9	9
84	Discussion: Soil–monopile interactions for offshore wind turbines. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2017, 170, 174-176.	0.4	2
85	Micromechanics of soil responses in cyclic simple shear tests. EPJ Web of Conferences, 2017, 140, 02008.	0.1	2
86	Design of monopiles for offshore wind turbines in 10 steps. Soil Dynamics and Earthquake Engineering, 2017, 92, 126-152.	1.9	248
87	Predicting long term performance of offshore wind turbines using cyclic simple shear apparatus. Soil Dynamics and Earthquake Engineering, 2017, 92, 678-683.	1.9	38
88	Seismic analysis of pile in liquefiable soil and plastic hinge. Geotechnical Research, 2017, 4, 203-213.	0.8	10
89	Civil Engineering Aspects of a Wind Farm and Wind Turbine Structures. , 2017, , 221-242.		10
90	Civil Engineering Challenges Associated With Design of Offshore Wind Turbines With Special		8

Civil Engineering Challenges Associated Reference to China. , 2017, , 243-273.

8

#	Article	IF	CITATIONS
91	Numerical Methods for SSI Analysis of Offshore Wind Turbine Foundations. , 2017, , 275-297.		2
92	Practical Method to Estimate Foundation Stiffness for Design of Offshore Wind Turbines. , 2017, , 329-352.		8
93	Physical Modeling of Offshore Wind Turbine Model for Prediction of Prototype Response. , 2017, , 353-374.		4
94	Dynamic stiffness of monopiles supporting offshore wind turbine generators. Soil Dynamics and Earthquake Engineering, 2016, 88, 15-32.	1.9	66
95	Evaluation of seismic performance of pileâ€supported models in liquefiable soils. Earthquake Engineering and Structural Dynamics, 2016, 45, 1019-1038.	2.5	55
96	Dynamic testing of free field response in stratified granular deposits. Soil Dynamics and Earthquake Engineering, 2016, 84, 157-168.	1.9	8
97	Soil–monopile interactions for offshore wind turbines. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2016, 169, 171-182.	0.4	18
98	Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI. Soil Dynamics and Earthquake Engineering, 2016, 83, 18-32.	1.9	164
99	An innovative cyclic loading device to study long term performance of offshore wind turbines. Soil Dynamics and Earthquake Engineering, 2016, 82, 154-160.	1.9	48
100	Use of offshore wind farms to increase seismic resilience of Nuclear Power Plants. Soil Dynamics and Earthquake Engineering, 2016, 80, 65-68.	1.9	28
101	Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics. Earthquake and Structures, 2016, 10, 1143-1179.	1.0	17
102	A Critical Review of Serviceability Limit State Requirements for Monopile Foundations of Offshore Wind Turbines. , 2015, , .		13
103	Long-term dynamic behavior of monopile supported offshore wind turbines in sand. Theoretical and Applied Mechanics Letters, 2015, 5, 80-84.	1.3	56
104	Numerical simulation of crack propagation under fatigue loading in piezoelectric material using extended finite element method. International Journal of Computational Materials Science and Engineering, 2015, 04, 1550025.	0.5	4
105	Model Tests on the Long-Term Dynamic Performance of Offshore Wind Turbines Founded on Monopiles in Sand. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137, .	0.6	36
106	An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models. Soil Dynamics and Earthquake Engineering, 2015, 74, 40-45.	1.9	73
107	Simplified critical mudline bending moment spectra of offshore wind turbine support structures. Wind Energy, 2015, 18, 2171-2197.	1.9	83
108	Dynamic response of a geotechnical rigid model container with absorbing boundaries. Soil Dynamics and Earthquake Engineering, 2015, 69, 46-56.	1.9	76

#	Article	IF	CITATIONS
109	Safety Assessment of Piled Buildings in Liquefiable Soils: Mathematical Tools. , 2015, , 2413-2427.		0
110	Accuracy of Frequency Domain Fatigue Damage Estimation Methods for Offshore Wind Turbine Support Structures. , 2014, , .		3
111	Experimental and Analytical Study of Seismic Soil-Pile-Structure Interaction in Layered Soil Half-Space. Journal of Earthquake Engineering, 2014, 18, 655-673.	1.4	4
112	Experimental Assessment of Seismic Pile-Soil Interaction. Geotechnical, Geological and Earthquake Engineering, 2014, , 455-475.	0.1	3
113	Experimental Investigation of Dynamic Behavior of Cantilever Retaining Walls. Geotechnical, Geological and Earthquake Engineering, 2014, , 477-493.	0.1	5
114	Modal analysis of pileâ€ s upported structures during seismic liquefaction. Earthquake Engineering and Structural Dynamics, 2014, 43, 119-138.	2.5	74
115	Fatigue life simulation of functionally graded materials under cyclic thermal load using XFEM. International Journal of Mechanical Sciences, 2014, 82, 41-59.	3.6	26
116	Characteristics of Flow Failures Triggered by Recent Earthquakes in China. Indian Geotechnical Journal, 2014, 44, 218-224.	0.7	6
117	A critical review of retrofitting methods for unreinforced masonry structures. International Journal of Disaster Risk Reduction, 2014, 7, 51-67.	1.8	125
118	CPT-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming. Georisk, 2014, 8, 14-28.	2.6	28
119	Collapse of Showa Bridge during 1964 Niigata earthquake: A quantitative reappraisal on the failure mechanisms. Soil Dynamics and Earthquake Engineering, 2014, 65, 55-71.	1.9	38
120	Undrained behaviour of two silica sands and practical implications for modelling SSI in liquefiable soils. Soil Dynamics and Earthquake Engineering, 2014, 66, 293-304.	1.9	48
121	Liquefaction of soil in the Emilia-Romagna region after the 2012 Northern Italy earthquake sequence. Natural Hazards, 2014, 73, 1749-1770.	1.6	26
122	Dynamic stiffness of pile in a layered elastic continuum. Geotechnique, 2014, 64, 303-319.	2.2	49
123	Seismic Requalification of Pile Foundations in Liquefiable Soils. Indian Geotechnical Journal, 2014, 44, 183-195.	0.7	17
124	Seismic Requalification of Geotechnical Structures. Indian Geotechnical Journal, 2014, 44, 113-118.	0.7	10
125	Centrifuge study on the cyclic performance of caissons in sand. International Journal of Physical Modelling in Geotechnics, 2014, 14, 99-115.	0.5	49
126	Obtaining Spectrum Matching Time Series Using a Reweighted Volterra Series Algorithm (RVSA). Bulletin of the Seismological Society of America, 2014, 104, 1663-1673.	1.1	21

#	Article	IF	CITATIONS
127	Safety Assessment of piled Buildings in Liquefiable Soils: Mathematical Tools. , 2014, , 1-16.		2
128	Challenges in Design of Foundations for Offshore Wind Turbines. Engineering & Technology Reference, 2014, , .	0.1	48
129	Seismic Design of Piles in Liquefiable Soils. Springer Geology, 2013, , 31-44.	0.2	1
130	Observed dynamic soil–structure interaction in scale testing of offshore wind turbine foundations. Soil Dynamics and Earthquake Engineering, 2013, 54, 47-60.	1.9	148
131	Probabilistic buckling analysis of axially loaded piles in liquefiable soils. Soil Dynamics and Earthquake Engineering, 2013, 45, 13-24.	1.9	41
132	Dynamic soil–structure interaction of monopile supported wind turbines in cohesive soil. Soil Dynamics and Earthquake Engineering, 2013, 49, 165-180.	1.9	273
133	Dynamics of offshore wind turbines supported on two foundations. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2013, 166, 159-169.	0.9	93
134	Winkler Springs (p-y curves) for pile design from stress-strain of soils: FE assessment of scaling coefficients using the Mobilized Strength Design concept. Geomechanics and Engineering, 2013, 5, 379-399.	0.9	44
135	Seismic retrofitting of non-engineered masonry in rural Nepal. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2012, 165, 273-286.	0.4	18
136	Dynamic Stability of Suction Caisson Founded Offshore Wind Turbines. , 2012, , .		0
137	Model Container Design for Soil-Structure Interaction Studies. Geotechnical, Geological and Earthquake Engineering, 2012, , 135-158.	0.1	40
138	Dynamic Analysis of Wind Turbine Towers on Flexible Foundations. Shock and Vibration, 2012, 19, 37-56.	0.3	129
139	Site-specific earthquake response study for hazard assessment in Kolkata city, India. Natural Hazards, 2012, 61, 943-965.	1.6	49
140	Economic MEMS based 3-axis water proof accelerometer for dynamic geo-engineering applications. Soil Dynamics and Earthquake Engineering, 2012, 36, 111-118.	1.9	34
141	Soil–Structure Interactions for Offshore Wind Turbines. Engineering & Technology Reference, 2012, 1,	0.1	4
142	Support Vector Classifiers for Prediction of Pile Foundation Performance in Liquefied Ground During Earthquakes. International Journal of Geotechnical Earthquake Engineering, 2012, 3, 42-59.	0.3	3
143	Similitude relationships for physical modelling of monopile-supported offshore wind turbines. International Journal of Physical Modelling in Geotechnics, 2011, 11, 58-68.	0.5	97
144	Experimental validation of soil–structure interaction of offshore wind turbines. Soil Dynamics and Earthquake Engineering, 2011, 31, 805-816.	1.9	132

#	Article	IF	CITATIONS
145	Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dynamics and Earthquake Engineering, 2011, 31, 1618-1628.	1.9	168
146	Vibrations of wind-turbines considering soil-structure interaction. Wind and Structures, an International Journal, 2011, 14, 85-112.	0.8	104
147	Bending–buckling interaction as a failure mechanism of piles in liquefiable soils. Soil Dynamics and Earthquake Engineering, 2010, 30, 32-39.	1.9	81
148	A case study of damages of the Kandla Port and Customs Office tower supported on a mat–pile foundation in liquefied soils under the 2001 Bhuj earthquake. Soil Dynamics and Earthquake Engineering, 2009, 29, 333-346.	1.9	74
149	A simplified method for unified buckling and free vibration analysis of pile-supported structures in seismically liquefiable soils. Soil Dynamics and Earthquake Engineering, 2009, 29, 1220-1235.	1.9	45
150	Observed increases in offshore pile driving resistance. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2009, 162, 71-80.	0.9	14
151	A critical review of methods for pile design in seismically liquefiable soils. Bulletin of Earthquake Engineering, 2008, 6, 407-446.	2.3	57
152	Buckling and bending response of slender piles in liquefiable soils during earthquakes. Geomechanics and Geoengineering, 2008, 3, 129-143.	0.9	11
153	Learning from collapse of piles in liquefiable soils. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2008, 161, 54-60.	0.3	8
154	Dynamic Instability of Pile-Supported Structures in Liquefiable Soils during Earthquakes. Shock and Vibration, 2008, 15, 665-685.	0.3	19
155	Buckling behaviour of single pile and pile bent in the Scotch Road Bridge, by Y. Khodair and S. Hassiotis. Geomechanics and Geoengineering, 2007, 2, 317-318.	0.9	0
156	A RECONSIDERATION OF THE SAFETY OF PILED BRIDGE FOUNDATIONS IN LIQUEFIABLE SOILS. Soils and Foundations, 2005, 45, 13-25.	0.7	47
157	An alternative mechanism of pile failure in liquefiable deposits during earthquakes. Geotechnique, 2004, 54, 203-213.	2.2	97
158	An alternative mechanism of pile failure in liquefiable deposits during earthquakes. Geotechnique, 2004, 54, 203-213.	2.2	16
159	Predicting Long-Term Performance of OWT Foundation using Cyclic Simple Shear Apparatus and DEM Simulations. , 0, , 1132-1139.		0
160	A Study on the Laterally Loaded Pile Behaviour in Liquefied Soil Using P-Y Method. IOP Conference Series: Materials Science and Engineering, 0, 471, 042015.	0.3	2
161	The Dynamic Behaviour of Pile Foundations in Seismically Liquefiable Soils: Failure Mechanisms, Analysis, Re-Qualification. , 0, , .		1