
Michal PÅ Ibyl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6361997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microreaction and membrane technologies for continuous single-enantiomer production: A review. Catalysis Reviews - Science and Engineering, 2023, 65, 773-821.	12.9	5
2	A mathematical model of a lateral electrochromatography device for continuous chiral separation. Separation and Purification Technology, 2022, 282, 120033.	7.9	4
3	Effects of aqueous systems and stabilization membranes on the separation of an antibiotic precursor in a microextractor. Separation and Purification Technology, 2022, 292, 121050.	7.9	3
4	Electricâ€fieldâ€enhanced selective separation of products of an enzymatic reaction in a membrane microâ€contactor. Biotechnology and Bioengineering, 2021, 118, 715-724.	3.3	10
5	Enzyme synthesis of cephalexin in continuous-flow microfluidic device in ATPS environment. Chemical Engineering Journal, 2020, 396, 125236.	12.7	32
6	Theoretical study on enzyme synthesis of cephalexin in a parallel-flow microreactor combined with electrically driven ATPS microextraction. Reaction Chemistry and Engineering, 2020, 5, 570-583.	3.7	6
7	Separation efficiency of parallel flow microfluidic extractors with transport enhanced by electric field. Separation and Purification Technology, 2019, 221, 311-318.	7.9	9
8	Travelingâ€wave Phenomena in a Model of Autocrine Signaling Coupled with Dynamics of the MAPK Cascade. Israel Journal of Chemistry, 2018, 58, 742-752.	2.3	0
9	Optimization of aqueous two-phase systems for the production of 6-aminopenicillanic acid in integrated microfluidic reactors-separators. New Biotechnology, 2018, 47, 73-79.	4.4	20
10	Characterization of slug flow of two aqueous phases by electrochemical impedance spectroscopy in a fluidic chip. Microelectronic Engineering, 2018, 194, 89-95.	2.4	7
11	Electric field assisted transport of dielectric droplets dispersed in aqueous solutions of ionic surfactants. Electrophoresis, 2018, 39, 2997-3005.	2.4	5
12	Electric field driven addressing of ATPS droplets in microfluidic chips. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	13
13	Computational fluid dynamics model of rhythmic motion of charged droplets between parallel electrodes. Journal of Fluid Mechanics, 2017, 822, 31-53.	3.4	6
14	Aldolase catalyzed L-phenylserine synthesis in a slug-flow microfluidic system – Performance and diastereoselectivity studies. Chemical Engineering Science, 2017, 169, 97-105.	3.8	16
15	Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade. PLoS ONE, 2017, 12, e0178457.	2.5	13
16	Electric Field Driven Addressing of Oil-in-Water Droplets in the Presence of Gradients of Ionic and Nonionic Surfactants. IEEE Transactions on Industry Applications, 2016, 52, 4337-4344.	4.9	10
17	Electrochemical characteristics of ideal polarizable interfaces with limited number of charge carriers. Physical Review E, 2015, 92, 052404.	2.1	1
18	Electric field driven addressing of oil in water droplets in the presence of gradients of ionic and		1

nonionic surfactants. , 2015, , .

Michal Přibyl

#	Article	IF	CITATIONS
19	Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer. Chemical Papers, 2015, 69, .	2.2	4
20	AC electric sensing of slug-flow properties with exposed gold microelectrodes. Journal of Micromechanics and Microengineering, 2014, 24, 015002.	2.6	8
21	Oscillatory motion of water droplets in kerosene above co-planar electrodes in microfluidic chips. AIP Advances, 2014, 4, 067103.	1.3	23
22	Local kinetics and thermodynamics of rapid electrochemical reactions. Physical Review E, 2014, 89, 042403.	2.1	1
23	Oscillatory Flow Accelerates Autocrine Signaling due to Nonlinear Effect of Convection on Receptor-Related Actions. Biophysical Journal, 2013, 105, 818-828.	0.5	3
24	Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions. Biomicrofluidics, 2013, 7, 054103.	2.4	17
25	Mathematical Modeling of Traveling Wave Micropumps: Analysis of Energy Transformation. IEEE Transactions on Industry Applications, 2013, 49, 685-690.	4.9	7
26	Development of a dip-stick electrochemical micro-biosensor: Stability of protein layers on gold. Microelectronic Engineering, 2013, 111, 289-293.	2.4	1
27	Enzyme hydrolysis of soybean oil in a slug flow microsystem. Biochemical Engineering Journal, 2012, 67, 194-202.	3.6	27
28	Effects of Convective Transport on Chemical Signal Propagation in Epithelia. Biophysical Journal, 2012, 102, 990-1000.	0.5	4
29	Development of a conductivity microsensor considering electric double layer capacity. Microelectronic Engineering, 2012, 97, 387-390.	2.4	3
30	Hybrid gold–copper stamp for rapid fabrication of microchips. Microelectronic Engineering, 2012, 98, 548-551.	2.4	2
31	Kinetic mechanism for modeling of electrochemical reactions. Physical Review E, 2012, 85, 041505.	2.1	5
32	Fast ferritin immunoassay on PDMS microchips. Chemical Papers, 2011, 65, .	2.2	8
33	Mathematical modeling of electrochemical cell involving novel kinetics description. , 2011, , .		1
34	Detection of immunoglobulins in a laser induced fluorescence system utilizing polydimethysiloxane microchips with advanced surface and optical properties. Biomicrofluidics, 2011, 5, 14101.	2.4	11
35	Mathematical modeling of AC electroosmosis in microfluidic and nanofluidic chips using equilibrium and non-equilibrium approaches. Journal of Applied Electrochemistry, 2010, 40, 967-980.	2.9	28
36	PDMS microfluidic chips prepared by a novel casting and pre-polymerization method. Microelectronic Engineering, 2010, 87, 1600-1602.	2.4	21

MICHAL PřIBYL

#	Article	IF	CITATIONS
37	Fabrication of plastic microchips with gold microelectrodes using techniques of sacrificed substrate and thermally activated solvent bonding. Microelectronic Engineering, 2010, 87, 1590-1593.	2.4	18
38	Plastic microfluidic systems made by imprinting against an epoxy stamp. Microelectronic Engineering, 2010, 87, 1527-1530.	2.4	14
39	Toward High Net Velocities in AC Electroosmotic Micropumps Based on Asymmetric Coplanar Electrodes. IEEE Transactions on Industry Applications, 2010, 46, 1679-1691.	4.9	9
40	Numerical Models for AC Electroosmotic Micropumps. IEEE Transactions on Industry Applications, 2010, 46, 2179-2189.	4.9	6
41	Study on surface properties of PDMS microfluidic chips treated with albumin. Biomicrofluidics, 2009, 3, 044101.	2.4	41
42	Numerical study on AC electroosmosis in microfluidic channels. Microelectronic Engineering, 2009, 86, 1333-1336.	2.4	12
43	Electro-osmotic characteristics of Polystyrene microchips – Experiments and modeling. Microelectronic Engineering, 2008, 85, 1100-1103.	2.4	5
44	Microfluidic chip for fast bioassays—evaluation of binding parameters. Biomicrofluidics, 2007, 1, 024101.	2.4	5
45	Transient behavior of an electrolytic diode. Physical Chemistry Chemical Physics, 2007, 9, 5374.	2.8	18
46	Dynamical and stationary analysis of an electrolyte diode and comparison with experiments. Computer Aided Chemical Engineering, 2006, 21, 291-296.	0.5	2
47	Adaptive mesh simulations of ionic systems in microcapillaries based on the estimation of transport times. Computers and Chemical Engineering, 2006, 30, 674-685.	3.8	6
48	Modeling reaction-transport processes in a microcapillary biosensor for detection of human IgG. Microelectronic Engineering, 2006, 83, 1660-1663.	2.4	12
49	Nonlinear phenomena and qualitative evaluation of risk of clogging in a capillary microreactor under imposed electric field. Chemical Engineering Journal, 2005, 105, 99-109.	12.7	21
50	Modeling of electric-field driven transport processes in microdevices for immunoassay. Chemical Engineering Journal, 2004, 101, 303-314.	12.7	14
51	Transitions in the model of epithelial patterning. Developmental Dynamics, 2003, 226, 155-159.	1.8	12
52	Long-Range Signal Transmission in Autocrine Relays. Biophysical Journal, 2003, 84, 883-896.	0.5	41
53	Discrete Models of Autocrine Cell Communication in Epithelial Layers. Biophysical Journal, 2003, 84, 3624-3635.	0.5	45
54	Modeling of hydrogel immobilized enzyme reactors with mass-transport enhancement by electric field. Chemical Engineering Science, 2001, 56, 433-442.	3.8	18

#	Article	IF	CITATIONS
55	Multiphysical Modeling of DC and AC Electroosmosis in Micro- and Nanosystems. , 0, , .		4