Pradipta Maji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6361988/publications.pdf

Version: 2024-02-01

		279798	302126
137	1,910	23	39
papers	citations	h-index	g-index
1	154	154	1161
154	154	154	1161
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multiview Regularized Discriminant Canonical Correlation Analysis: Sequential Extraction of Relevant Features From Multiblock Data. IEEE Transactions on Cybernetics, 2023, 53, 5497-5509.	9.5	1
2	Selective Update of Relevant Eigenspaces for Integrative Clustering of Multimodal Data. IEEE Transactions on Cybernetics, 2022, 52, 947-959.	9.5	1
3	Multi-Manifold Optimization for Multi-View Subspace Clustering. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 3895-3907.	11.3	14
4	Adaptive Generalized Multi-View Canonical Correlation Analysis for Incrementally Update Multiblock Data. IEEE Transactions on Knowledge and Data Engineering, 2022, , 1-14.	5.7	0
5	Rough Hypercuboid Based Generalized and Robust IT2 Fuzzy C-Means Algorithm. IEEE Transactions on Cybernetics, 2021, 51, 3641-3652.	9.5	11
6	Approximate Graph Laplacians for Multimodal Data Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 798-813.	13.9	16
7	Rough-Fuzzy Segmentation of Brain MR Volumes: Applications in Tumor Detection and Malignancy Assessment. Lecture Notes in Computer Science, 2021, , 35-43.	1.3	O
8	Multispectral co-occurrence of wavelet coefficients for malignancy assessment of brain tumors. PLoS ONE, 2021, 16, e0250964.	2.5	2
9	Rough-Bayesian approach to select class-pair specific descriptors for HEp-2 cell staining pattern recognition. Pattern Recognition, 2021, 117, 107982.	8.1	1
10	CanSuR: a robust method for staining pattern recognition of HEp-2 cell IIF images. Neural Computing and Applications, 2020, 32, 16471-16489.	5.6	1
11	Rough segmentation of coherent local intensity for bias induced 3-D MR brain images. Pattern Recognition, 2020, 97, 106997.	8.1	10
12	Circular Clustering in Fuzzy Approximation Spaces for Color Normalization of Histological Images. IEEE Transactions on Medical Imaging, 2020, 39, 1735-1745.	8.9	10
13	Scalable Non-Linear Graph Fusion for Prioritizing Cancer-Causing Genes. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, PP, 1-1.	3.0	2
14	Selection of relevant texture descriptors for recognition of HEp-2 cell staining patterns. International Journal of Machine Learning and Cybernetics, 2020, 11, 2127-2147.	3.6	3
15	A Spatially Constrained Probabilistic Model for Robust Image Segmentation. IEEE Transactions on Image Processing, 2020, 29, 4898-4910.	9.8	8
16	Medical Image Segmentation by Partitioning Spatially Constrained Fuzzy Approximation Spaces. IEEE Transactions on Fuzzy Systems, 2020, 28, 965-977.	9.8	23
17	Segmentation of bias field induced brain MR images using rough sets and stomped-t distribution. Information Sciences, 2019, 504, 520-545.	6.9	11
18	Rough Sets and Local Texture Features for Diagnosis of Connective Tissue Disorders. Lecture Notes in Computer Science, 2019, , 465-479.	1.3	0

#	Article	IF	Citations
19	Low-Rank Joint Subspace Construction for Cancer Subtype Discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 17, 1-1.	3.0	3
20	Rough-Fuzzy Circular Clustering for Color Normalization of Histological Images. Fundamenta Informaticae, 2019, 164, 103-117.	0.4	6
21	Recent advances in multimodal big data analysis for cancer diagnosis. CSI Transactions on ICT, 2019, 7, 227-231.	1.0	2
22	An Efficient Method for Automatic Recognition of Virus Particles in TEM Images. Lecture Notes in Computer Science, 2019, , 21-31.	1.3	5
23	Multimodal Brain Tumor Segmentation Using Ensemble of Forest Method. Lecture Notes in Computer Science, 2018, , 159-168.	1.3	17
24	Identification of Co-expressed microRNAs Using Rough Hypercuboid-Based Interval Type-2 Fuzzy C-Means Algorithm. Advances in Intelligent Systems and Computing, 2018, , 47-57.	0.6	0
25	FaRoC: Fast and Robust Supervised Canonical Correlation Analysis for Multimodal Omics Data. IEEE Transactions on Cybernetics, 2018, 48, 1229-1241.	9.5	23
26	Spatially Constrained Student's t-Distribution Based Mixture Model for Robust Image Segmentation. Journal of Mathematical Imaging and Vision, 2018, 60, 355-381.	1.3	13
27	Staining Pattern Recognition Of HEp-2 Cell Images Using Supervised Canonical Correlation Analysis. , 2018, , .		0
28	An accurate and robust skull stripping method for 3-D magnetic resonance brain images. Magnetic Resonance Imaging, 2018, 54, 46-57.	1.8	11
29	Fundamentals of Rough-Fuzzy Clustering and Its Application in Bioinformatics. , 2017, , 513-543.		1
30	Rough Hypercuboid and Modified Kulczynski Coefficient for Disease Gene Identification. Lecture Notes in Computer Science, 2017, , 465-474.	1.3	1
31	Stomped-t: A novel probability distribution for rough-probabilistic clustering. Information Sciences, 2017, 421, 104-125.	6.9	6
32	Multimodal Omics Data Integration Using Max Relevance–Max Significance Criterion. IEEE Transactions on Biomedical Engineering, 2017, 64, 1841-1851.	4.2	11
33	Significance and Functional Similarity for Identification of Disease Genes. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 1419-1433.	3.0	8
34	RelSim: An integrated method to identify disease genes using gene expression profiles and PPIN based similarity measure. Information Sciences, 2017, 384, 110-125.	6.9	26
35	Rough-fuzzy segmentation of HEp-2 cell indirect immunofluorescence images. International Journal of Data Mining and Bioinformatics, 2017, 17, 311.	0.1	5
36	Principal Subspace Updation for Integrative Clustering of Multimodal Omics Data., 2017,,.		0

#	Article	IF	CITATIONS
37	Regularization and Shrinkage in Rough Set Based Canonical Correlation Analysis. Lecture Notes in Computer Science, 2017, , 432-446.	1.3	1
38	A New Method to Address Singularity Problem in Multimodal Data Analysis. Lecture Notes in Computer Science, 2017, , 43-51.	1.3	0
39	Rough-fuzzy segmentation of HEp-2 cell indirect immunofluorescence images. International Journal of Data Mining and Bioinformatics, 2017, 17, 311.	0.1	0
40	Advances in Rough Set Based Hybrid Approaches for Medical Image Analysis. Lecture Notes in Computer Science, 2017, , 25-33.	1.3	2
41	Clustering of microRNAs Using Rough Hypercuboid Based Fuzzy C-Means. , 2016, , .		0
42	Rough Hypercuboid Based Supervised Regularized Canonical Correlation for Multimodal Data Analysis*. Fundamenta Informaticae, 2016, 148, 133-155.	0.4	4
43	A modified rough-fuzzy clustering algorithm with spatial information for HEp-2 cell image segmentation. , 2016, , .		4
44	Rough-probabilistic clustering and hidden Markov random field model for segmentation of HEp-2 cell and brain MR images. Applied Soft Computing Journal, 2016, 46, 558-576.	7.2	25
45	Preface: pattern recognition and mining. Natural Computing, 2016, 15, 355-357.	3.0	2
46	Gene expression and protein–protein interaction data for identification of colon cancer related genes using f-information measures. Natural Computing, 2016, 15, 449-463.	3.0	10
47	SoBT-RFW: Rough-Fuzzy Computing and Wavelet Analysis Based Automatic Brain Tumor Detection Method from MR Images*. Fundamenta Informaticae, 2015, 142, 237-267.	0.4	6
48	Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation. PLoS ONE, 2015, 10, e0123677.	2.5	24
49	Rough-fuzzy clustering and multiresolution image analysis for text-graphics segmentation. Applied Soft Computing Journal, 2015, 30, 705-721.	7.2	32
50	An automated method for counting and characterizing red blood cells using mathematical morphology. , 2015, , .		15
51	Simultaneous Feature Selection and Extraction Using Feature Significance. Fundamenta Informaticae, 2015, 136, 405-431.	0.4	0
52	A New Post-processing Method to Detect Brain Tumor Using Rough-Fuzzy Clustering. Lecture Notes in Computer Science, 2015, , 407-417.	1.3	3
53	A New Similarity Measure for Identification of Disease Genes. Lecture Notes in Computer Science, 2015, , 451-461.	1.3	1
54	A simple skull stripping algorithm for brain MRI. , 2015, , .		25

#	Article	lF	CITATIONS
55	IT2 Fuzzy-Rough Sets and Max Relevance-Max Significance Criterion for Attribute Selection. IEEE Transactions on Cybernetics, 2015, 45, 1657-1668.	9.5	31
56	Rough Sets and Stomped Normal Distribution for Simultaneous Segmentation and Bias Field Correction in Brain MR Images. IEEE Transactions on Image Processing, 2015, 24, 5764-5776.	9.8	29
57	Possibilistic biclustering algorithm for discovering value-coherent overlapping l´-biclusters. International Journal of Machine Learning and Cybernetics, 2015, 6, 95-107.	3.6	4
58	Rough Sets for Finite Mixture Model Based HEp-2 Cell Segmentation. Lecture Notes in Computer Science, 2015, , 459-469.	1.3	3
59	Gene ontology based quantitative index to select functionally diverse genes. International Journal of Machine Learning and Cybernetics, 2014, 5, 245-262.	3.6	5
60	Identification of Disease Genes Using Gene Expression and Protein–Protein Interaction Data. , 2014, , 155-170.		1
61	A Rough Hypercuboid Approach for Feature Selection in Approximation Spaces. IEEE Transactions on Knowledge and Data Engineering, 2014, 26, 16-29.	5.7	51
62	Fuzzy Measures and Weighted Co-Occurrence Matrix for Segmentation of Brain MR Images. , 2014, , 277-297.		2
63	City block distance and rough-fuzzy clustering for identification of co-expressed microRNAs. Molecular BioSystems, 2014, 10, 1509-1523.	2.9	19
64	Scalable Pattern Recognition Algorithms. , 2014, , .		7
65	Neural Network Tree for Identification of Splice Junction and Protein Coding Region in DNA. , 2014, , 45-66.		2
66	Simultaneous Feature Selection and Extraction Using Fuzzy Rough Sets. Advances in Intelligent Systems and Computing, 2014, , 115-123.	0.6	3
67	f-Information Measures for Selection of Discriminative Genes from Microarray Data., 2014, , 131-153.		O
68	Design of String Kernel to Predict Protein Functional Sites Using Kernel-Based Classifiers. , 2014, , 67-101.		0
69	Synthesis of Non-uniform Cellular Automata Having only Point Attractors. Lecture Notes in Computer Science, 2014, , 105-114.	1.3	2
70	Rough Sets for Insilico Identification of Differentially Expressed miRNAs. , 2014, , 171-193.		3
71	Rough Sets for Selection of Molecular Descriptors to Predict Biological Activity of Molecules. , 2014, , 105-129.		0
72	Grouping Functionally Similar Genes From Microarray Data Using Rough–Fuzzy Clustering. , 2014, , 197-224.		1

#	Article	IF	CITATIONS
73	Possibilistic Biclustering for Discovering Value-Coherent Overlapping $\$$ delta $\$$ $\^{i}$ -Biclusters. , 2014, , 253-276.		0
74	Mutual Information Based Supervised Attribute Clustering for Microarray Sample Classification., 2014,, 225-252.		0
75	A New Rough-Fuzzy Clustering Algorithm and its Applications. Advances in Intelligent Systems and Computing, 2014, , 1245-1251.	0.6	1
76	On fuzzy-rough attribute selection: Criteria of Max-Dependency, Max-Relevance, Min-Redundancy, and Max-Significance. Applied Soft Computing Journal, 2013, 13, 3968-3980.	7.2	46
77	Fuzzy–Rough Simultaneous Attribute Selection and Feature Extraction Algorithm. IEEE Transactions on Cybernetics, 2013, 43, 1166-1177.	9.5	44
78	Rough-Fuzzy Clustering for Grouping Functionally Similar Genes from Microarray Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 286-299.	3.0	75
79	$\hat{l}^{1}\!\!\!/_{4}$ HEM for identification of differentially expressed miRNAs using hypercuboid equivalence partition matrix. BMC Bioinformatics, 2013, 14, 266.	2.6	12
80	Robust Rough-Fuzzy C-Means Algorithm: Design and Applications in Coding and Non-coding RNA Expression Data Clustering. Fundamenta Informaticae, 2013, 124, 153-174.	0.4	15
81	Rough Sets for Bias Field Correction in MR Images Using Contraharmonic Mean and Quantitative Index. IEEE Transactions on Medical Imaging, 2013, 32, 2140-2151.	8.9	18
82	Rough sets for in silico identification of differentially expressed miRNAs. International Journal of Nanomedicine, 2013, 8 Suppl 1, 63.	6.7	3
83	City Block Distance for Identification of Co-expressed MicroRNAs. Lecture Notes in Computer Science, 2013, , 387-396.	1.3	5
84	Contraharmonic Mean Based Bias Field Correction in MR Images. Lecture Notes in Computer Science, 2013, , 523-530.	1.3	4
85	Rough Set Based Homogeneous Unsharp Masking for Bias Field Correction in MRI. Lecture Notes in Computer Science, 2013, , 542-551.	1.3	1
86	Rough-Fuzzy Clustering and M-Band Wavelet Packet for Text-Graphics Segmentation. Lecture Notes in Computer Science, 2013, , 530-538.	1.3	0
87	Rough Set-Based Feature Selection: Criteria of Max-Dependency, Max-Relevance, and Max-Significance. Intelligent Systems Reference Library, 2013, , 393-418.	1.2	1
88	Rough sets and support vector machine for selecting differentially expressed miRNAs. , 2012, , .		3
89	Mutual Information-Based Supervised Attribute Clustering for Microarray Sample Classification. IEEE Transactions on Knowledge and Data Engineering, 2012, 24, 127-140.	5 . 7	41
90	Robust RFCM algorithm for identification of co-expressed miRNAs. , 2012, , .		5

#	Article	IF	Citations
91	Relevant and Significant Supervised Gene Clusters for Microarray Cancer Classification. IEEE Transactions on Nanobioscience, 2012, 11, 161-168.	3.3	31
92	Rough-Fuzzy C-Means for Clustering Microarray Gene Expression Data. Lecture Notes in Computer Science, 2012, , 203-210.	1.3	3
93	Fuzzy-Rough MRMS Method for Relevant and Significant Attribute Selection. Communications in Computer and Information Science, 2012, , 310-320.	0.5	1
94	Fuzzy Discretization for Rough Set Based Gene Selection Algorithm., 2011,,.		3
95	Microarray Time-Series Data Clustering Using Rough-Fuzzy C-Means Algorithm. , 2011, , .		10
96	Fuzzy–Rough Supervised Attribute Clustering Algorithm and Classification of Microarray Data. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41, 222-233.	5.0	70
97	Rough set based maximum relevance-maximum significance criterion and Gene selection from microarray data. International Journal of Approximate Reasoning, 2011, 52, 408-426.	3.3	126
98	Rough Sets for Selection of Functionally Diverse Genes from Microarray Data. Lecture Notes in Computer Science, 2011, , 477-484.	1.3	0
99	Supervised gene clustering for extraction of discriminative features from microarray data. , 2010, , .		1
100	Feature Selection Using f-Information Measures in Fuzzy Approximation Spaces. IEEE Transactions on Knowledge and Data Engineering, 2010, 22, 854-867.	5.7	55
101	Rough Sets for Selection of Molecular Descriptors to Predict Biological Activity of Molecules. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2010, 40, 639-648.	2.9	26
102	Rough set based gene selection algorithm for microarray sample classification. , 2010, , .		7
103	Efficient Design of Bio-Basis Function to Predict Protein Functional Sites Using Kernel-Based Classifiers. IEEE Transactions on Nanobioscience, 2010, 9, 242-249.	3.3	3
104	Protein Functional Sites Prediction Using Modified Bio-Basis Function and Quantitative Indices. IEEE Transactions on Nanobioscience, 2010, 9, 250-257.	3.3	2
105	Fuzzy–Rough Sets for Information Measures and Selection of Relevant Genes From Microarray Data. IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40, 741-752.	5.0	80
106	\$f\$-Information Measures for Efficient Selection of Discriminative Genes From Microarray Data. IEEE Transactions on Biomedical Engineering, 2009, 56, 1063-1069.	4.2	62
107	Content-based image retrieval using visually significant point features. Fuzzy Sets and Systems, 2009, 160, 3323-3341.	2.7	58
108	Non-uniform cellular automata based associative memory: Evolutionary design and basins of attraction. Information Sciences, 2008, 178, 2315-2336.	6.9	21

#	Article	IF	Citations
109	Efficient design of neural network tree using a new splitting criterion. Neurocomputing, 2008, 71, 787-800.	5.9	20
110	Prediction of Protein Functional Sites Using Novel String Kernels., 2008,,.		0
111	A Novel Biclustering Algorithm for Discovering Value-Coherent Overlapping ¿-Biclusters. , 2008, , .		4
112	Fault Diagnosis of Electronic Circuits Using Cellular Automata Based Pattern Classifier. , 2008, , 225-246.		1
113	Maximum Class Separability for Rough-Fuzzy C-Means Based Brain MR Image Segmentation. Lecture Notes in Computer Science, 2008, , 114-134.	1.3	26
114	Rough-Fuzzy Hybridization for Protein Sequence Analysis. Statistical Science and Interdisciplinary Research, 2008, , 243-275.	0.0	1
115	Rough-Fuzzy Relational Clustering Algorithm for Biological Sequence Mining. , 2008, , 292-299.		1
116	Deformation Correction in Brain MRI Using Mutual Information and Genetic Algorithm., 2007,,.		3
117	Rough-Fuzzy C-Medoids Algorithm and Selection of Bio-Basis for Amino Acid Sequence Analysis. IEEE Transactions on Knowledge and Data Engineering, 2007, 19, 859-872.	5.7	43
118	Protein sequence analysis using relational soft clustering algorithms. International Journal of Computer Mathematics, 2007, 84, 599-617.	1.8	5
119	Rough Set Based Generalized Fuzzy \$C\$ -Means Algorithm and Quantitative Indices. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37, 1529-1540.	5.0	199
120	Knowledge Discovery in Distributed Biological Datasets Using Fuzzy Cellular Automata., 2005,,.		0
121	Basins of Attraction of Cellular Automata Based Associative Memory and Its Rule Space. , 2005, , .		0
122	Fuzzy Cellular Automata for Modeling Pattern Classifier. IEICE Transactions on Information and Systems, 2005, E88-D, 691-702.	0.7	21
123	FMACA: A Fuzzy Cellular Automata Based Pattern Classifier. Lecture Notes in Computer Science, 2004, , 494-505.	1.3	11
124	Design and Characterization of Cellular Automata Based Associative Memory for Pattern Recognition. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34, 672-678.	5.0	28
125	Cellular Automata Evolution for Distributed Data Mining. Lecture Notes in Computer Science, 2004, , 40-49.	1.3	4
126	Cellular Automata Evolution for Pattern Classification. Lecture Notes in Computer Science, 2004, , 660-669.	1.3	15

#	Article	IF	CITATIONS
127	Cellular Automata Based Pattern Classifying Machine for Distributed Data Mining. Lecture Notes in Computer Science, 2004, , 848-853.	1.3	0
128	Error correcting capability of cellular automata based associative memory. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2003, 33, 466-480.	2.9	18
129	GENERALIZED MULTIPLE ATTRACTOR CELLULAR AUTOMATA (GMACA) MODEL FOR ASSOCIATIVE MEMORY. International Journal of Pattern Recognition and Artificial Intelligence, 2002, 16, 781-795.	1.2	17
130	Characterization of Non-linear Cellular Automata Model for Pattern Recognition. Lecture Notes in Computer Science, 2002, , 214-220.	1.3	5
131	Cellular Automata Machine for Pattern Recognition. Lecture Notes in Computer Science, 2002, , 270-281.	1.3	9
132	Evolving Cellular Automata Based Associative Memory for Pattern Recognition. Lecture Notes in Computer Science, 2001, , 115-124.	1.3	6
133	A pipeline architecture for Encompression (encryption + compression) technology. , 0, , .		5
134	Embedded genetic algorithm for multiobjective optimization problem. , 0, , .		0
135	Cellular automata in protein coding region identification. , 0, , .		1
136	Fuzzy cellular automata based associative memory for pattern recognition. , 0, , .		0
137	Relevant and Non-Redundant Amino Acid Sequence Selection for Protein Functional Site Identification., 0,, 139-164.		O