
Howard D Rundle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6361987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological speciation. Ecology Letters, 2005, 8, 336-352.	3.0	1,606
2	Natural Selection and Parallel Speciation in Sympatric Sticklebacks. Science, 2000, 287, 306-308.	6.0	647
3	Speciation in nature: the threespine stickleback model systems. Trends in Ecology and Evolution, 2002, 17, 480-488.	4.2	491
4	Divergent Selection and the Evolution of Signal Traits and Mating Preferences. PLoS Biology, 2005, 3, e368.	2.6	167
5	A GENETIC INTERPRETATION OF ECOLOGICALLY DEPENDENT ISOLATION. Evolution; International Journal of Organic Evolution, 2001, 55, 198-201.	1.1	161
6	REINFORCEMENT OF STICKLEBACK MATE PREFERENCES: SYMPATRY BREEDS CONTEMPT. Evolution; International Journal of Organic Evolution, 1998, 52, 200-208.	1.1	149
7	A TEST OF ECOLOGICALLY DEPENDENT POSTMATING ISOLATION BETWEEN SYMPATRIC STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2002, 56, 322-329.	1.1	144
8	Genetic variance in female condition predicts indirect genetic variance in male sexual display traits. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6045-6050.	3.3	135
9	Experimental test of predation's effect on divergent selection during character displacement in sticklebacks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14943-14948.	3.3	130
10	The Contribution of Selection and Genetic Constraints to Phenotypic Divergence. American Naturalist, 2010, 175, 186-196.	1.0	121
11	Reinforcement of Stickleback Mate Preferences: Sympatry Breeds Contempt. Evolution; International Journal of Organic Evolution, 1998, 52, 200.	1.1	119
12	Genetic Constraints and the Evolution of Display Trait Sexual Dimorphism by Natural and Sexual Selection. American Naturalist, 2008, 171, 22-34.	1.0	111
13	THE ROLES OF NATURAL AND SEXUAL SELECTION DURING ADAPTATION TO A NOVEL ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2006, 60, 2218-2225.	1.1	104
14	Genomic Evidence that Sexual Selection Impedes Adaptation to a Novel Environment. Current Biology, 2015, 25, 1860-1866.	1.8	90
15	Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1567-1578.	1.8	88
16	The physical environment mediates male harm and its effect on selection in females. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170424.	1.2	71
17	Sexually antagonistic genetic variance for fitness in an ancestral and a novel environment. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2009-2014.	1.2	68
18	The ecology of sexual conflict: ecologically dependent parallel evolution of male harm and female resistance in <i>Drosophila melanogaster</i> . Ecology Letters, 2014, 17, 221-228.	3.0	64

#	Article	IF	CITATIONS
19	ADAPTATION TO DESICCATION FAILS TO GENERATE PRE- AND POSTMATING ISOLATION IN REPLICATE <i>DROSOPHILA MELANOGASTER</i> LABORATORY POPULATIONS. Evolution; International Journal of Organic Evolution, 2010, 64, 710-723.	1.1	59
20	SEXUAL SELECTION IS INEFFECTUAL OR INHIBITS THE PURGING OF DELETERIOUS MUTATIONS IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2012, 66, 2127-2137.	1.1	59
21	EXPERIMENTAL EVIDENCE FOR THE EVOLUTION OF INDIRECT GENETIC EFFECTS: CHANGES IN THE INTERACTION EFFECT COEFFICIENT, PSI (Î [°]), DUE TO SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2010, 64, 1849-1856.	1.1	58
22	Comparing the intersex genetic correlation for fitness across novel environments in the fruit fly, Drosophila serrata. Heredity, 2014, 112, 143-148.	1.2	55
23	Natural Selection and Ecological Speciation in Sticklebacks. , 2004, , 192-209.		54
24	Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 180, 38-42.	0.8	54
25	Fitness-Associated Sexual Reproduction in a Filamentous Fungus. Current Biology, 2010, 20, 1350-1355.	1.8	52
26	Competition for mates and the improvement of nonsexual fitness. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6762-6767.	3.3	52
27	Comparing Complex Fitness Surfaces: Amongâ€Population Variation in Mutual Sexual Selection inDrosophila serrata. American Naturalist, 2008, 171, 443-454.	1.0	49
28	REPRODUCTIVE CHARACTER DISPLACEMENT OF EPICUTICULAR COMPOUNDS AND THEIR CONTRIBUTION TO MATE CHOICE IN <i>DROSOPHILA SUBQUINARIA</i> AND <i>DROSOPHILA RECENS</i> . Evolution; International Journal of Organic Evolution, 2014, 68, 1163-1175.	1.1	49
29	The diversification of mate preferences by natural and sexual selection. Journal of Evolutionary Biology, 2009, 22, 1608-1615.	0.8	45
30	DIVERGENT ENVIRONMENTS AND POPULATION BOTTLENECKS FAIL TO GENERATE PREMATING ISOLATION IN DROSOPHILA PSEUDOOBSCURA. Evolution; International Journal of Organic Evolution, 2003, 57, 2557-2565.	1.1	42
31	Condition Dependence of a Multicomponent Sexual Display Trait in <i>Drosophila serrata</i> . American Naturalist, 2011, 177, 812-823.	1.0	38
32	Differential effects of genetic vs. environmental quality in <i>Drosophila melanogaster</i> suggest multiple forms of condition dependence. Ecology Letters, 2015, 18, 317-326.	3.0	38
33	Sexual selection against deleterious mutations via variable male search success. Biology Letters, 2009, 5, 795-797.	1.0	36
34	The Effects of Selection and Bottlenecks on Male Mating Success in Peripheral Isolates. American Naturalist, 1999, 153, 437-444.	1.0	35
35	An experimental test for indirect benefits in Drosophila melanogaster. BMC Evolutionary Biology, 2007, 7, 36.	3.2	35
36	Sex-Specific Among-Individual Covariation in Locomotor Activity and Resting Metabolic Rate in <i>Drosophila melanogaster</i> . American Naturalist, 2019, 194, E164-E176.	1.0	35

#	Article	IF	CITATIONS
37	The roles of natural and sexual selection during adaptation to a novel environment. Evolution; International Journal of Organic Evolution, 2006, 60, 2218-25.	1.1	34
38	Epicuticular Compounds of Drosophila subquinaria and D. recens: Identification, Quantification, and Their Role in Female Mate Choice. Journal of Chemical Ecology, 2013, 39, 579-590.	0.9	32
39	QUANTITATIVE GENETICS OF FEMALE MATE PREFERENCES IN AN ANCESTRAL AND A NOVEL ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2010, 64, 2758-2766.	1.1	30
40	STRONGER CONVEX (STABILIZING) SELECTION ON HOMOLOGOUS SEXUAL DISPLAY TRAITS IN FEMALES THAN IN MALES: A MULTIPOPULATION COMPARISON IN DROSOPHILA SERRATA. Evolution; International Journal of Organic Evolution, 2011, 65, 893-899.	1.1	27
41	Evolutionary optimum for male sexual traits characterized using the multivariate Robertson-Price Identity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10414-10419.	3.3	27
42	SINGLE FOUNDER-FLUSH EVENTS AND THE EVOLUTION OF REPRODUCTIVE ISOLATION. Evolution; International Journal of Organic Evolution, 1998, 52, 1850-1855.	1.1	26
43	THE ROLES OF NATURAL AND SEXUAL SELECTION DURING ADAPTATION TO A NOVEL ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2006, 60, 2218.	1.1	26
44	Do female fruit flies (Drosophila serrata) copy the mate choice of others?. Behavioural Processes, 2009, 82, 78-80.	0.5	26
45	Environmental complexity and the purging of deleterious alleles. Evolution; International Journal of Organic Evolution, 2017, 71, 2714-2720.	1.1	25
46	The effects of male harm vary with female quality and environmental complexity in <i>Drosophila melanogaster</i> . Biology Letters, 2018, 14, 20180443.	1.0	25
47	Single Founder-Flush Events and the Evolution of Reproductive Isolation. Evolution; International Journal of Organic Evolution, 1998, 52, 1850.	1.1	24
48	REDUCED GENETIC VARIANCE AMONG HIGH FITNESS INDIVIDUALS: INFERRING STABILIZING SELECTION ON MALE SEXUAL DISPLAYS IN <i>DROSOPHILA SERRATA</i> . Evolution; International Journal of Organic Evolution, 2012, 66, 3101-3110.	1.1	23
49	Selection may be strongest when resources are scarce: A comment on Wilson. Evolutionary Ecology, 1996, 10, 559-563.	0.5	21
50	Betweenâ€sex genetic covariance constrains the evolution of sexual dimorphism in <i><scp>D</scp>rosophila melanogaster</i> . Journal of Evolutionary Biology, 2014, 27, 1721-1732.	0.8	21
51	Time flies: time of day and social environment affect cuticular hydrocarbon sexual displays in <i>Drosophila serrata</i> . Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140821.	1.2	21
52	The Alignment of Natural and Sexual Selection. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 499-517.	3.8	21
53	Alterations in fetal and placental deoxyribonucleic acid synthesis rates after chronic fetal placental embolization. American Journal of Obstetrics and Gynecology, 1995, 172, 1451-1458.	0.7	18
54	Hybridization without guilt: gene flow and the biological species concept. Journal of Evolutionary Biology, 2001, 14, 868-869.	0.8	18

4

#	Article	IF	CITATIONS
55	Phenotypic covariance structure and its divergence for acoustic mate attraction signals among four cricket species. Ecology and Evolution, 2012, 2, 181-195.	0.8	18
56	Territory defense as a condition-dependent component of male reproductive success in <i>Drosophila serrata</i> . Evolution; International Journal of Organic Evolution, 2015, 69, 407-418.	1.1	18
57	Dietary stress does not strengthen selection against single deleterious mutations in Drosophila melanogaster. Heredity, 2012, 108, 203-210.	1.2	17
58	Misalignment of natural and sexual selection among divergently adapted Drosophila melanogaster populations. Animal Behaviour, 2014, 87, 45-51.	0.8	17
59	Comparing ageing and the effects of diet supplementation in wild vs. captive antler flies, Protopiophila litigata. Journal of Animal Ecology, 2019, 88, 1913-1924.	1.3	17
60	Quantifying selection on standard metabolic rate and body mass in <i>Drosophila melanogaster</i> . Evolution; International Journal of Organic Evolution, 2021, 75, 130-140.	1.1	17
61	Experimental evidence of condition-dependent sexual dimorphism in the weakly dimorphic antler fly <i>Protopiophila litigata</i> (Diptera: Piophilidae). Biological Journal of the Linnean Society, 2015, 116, 211-220.	0.7	16
62	The genetic basis of female pheromone differences between Drosophila melanogaster and D. simulans. Heredity, 2019, 122, 93-109.	1.2	16
63	Air-borne genotype by genotype indirect genetic effects are substantial in the filamentous fungus Aspergillus nidulans. Heredity, 2017, 119, 1-7.	1.2	15
64	The contribution of sexual selection to ecological and mutation-order speciation. Evolution; International Journal of Organic Evolution, 2018, 72, 2571-2575.	1.1	15
65	Conspicuous Female Ornamentation and Tests of Male Mate Preference in Threespine Sticklebacks (Gasterosteus aculeatus). PLoS ONE, 2015, 10, e0120723.	1.1	14
66	Patterns of reproductive isolation in the <i>Drosophila subquinaria</i> complex: can reinforced premating isolation cascade to other species?. Environmental Epigenetics, 2016, 62, 183-191.	0.9	13
67	The purging of deleterious mutations in simple and complex mating environments. Biology Letters, 2017, 13, 20170518.	1.0	13
68	Testing for local adaptation in adult male and female fitness among populations evolved under different mate competition regimes. Evolution; International Journal of Organic Evolution, 2019, 73, 1604-1616.	1.1	13
69	Evolutionary Consequences of Altered Atmospheric Oxygen in Drosophila melanogaster. PLoS ONE, 2011, 6, e26876.	1.1	12
70	Reproductive character displacement of female mate preferences for male cuticular hydrocarbons in <i>Drosophila subquinaria</i> . Evolution; International Journal of Organic Evolution, 2015, 69, 2625-2637.	1.1	11
71	Level up: the expression of male sexually selected cuticular hydrocarbons is mediated by sexual experience. Animal Behaviour, 2016, 112, 169-177.	0.8	11
72	Development time mediates the effect of larval diet on ageing and mating success of male antler flies in the wild. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201876.	1.2	11

#	Article	IF	CITATIONS
73	Multivariate Phenotypic Divergence Due to the Fixation of Beneficial Mutations in Experimentally Evolved Lineages of a Filamentous Fungus. PLoS ONE, 2012, 7, e50305.	1.1	10
74	Remating and Sperm Competition in Replicate Populations of Drosophila melanogaster Adapted to Alternative Environments. PLoS ONE, 2014, 9, e90207.	1.1	10
75	Sexual selection on <i><scp>D</scp>rosophila serrata</i> male pheromones does not vary with female age or mating status. Journal of Evolutionary Biology, 2014, 27, 1279-1286.	0.8	10
76	Tissue-specific insulin signaling mediates female sexual attractiveness. PLoS Genetics, 2017, 13, e1006935.	1.5	10
77	Male-limited evolution suggests no extant intralocus sexual conflict over the sexually dimorphic cuticular hydrocarbons of Drosophila melanogaster. Journal of Genetics, 2011, 90, 443-452.	0.4	9
78	Variable assortative mating in replicate mating trials using Drosophila melanogaster populations derived from contrasting opposing slopes of 'Evolution Canyon', Israel. Journal of Evolutionary Biology, 2005, 18, 1123-1129.	0.8	8
79	Selection on the <i>Drosophila</i> seminal fluid protein Acp62F. Ecology and Evolution, 2013, 3, 1942-1950.	0.8	8
80	Crowd control: sex ratio affects sexually selected cuticular hydrocarbons in male <i>Drosophila serrata</i> . Journal of Evolutionary Biology, 2017, 30, 583-590.	0.8	7
81	Sexâ€specific genetic (co)variances of standard metabolic rate, body mass and locomotor activity in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2021, 34, 1279-1289.	0.8	7
82	Maternal and Paternal Age Effects on Male Antler Flies: A Field Experiment. American Naturalist, 2022, 199, 436-442.	1.0	7
83	Testing the correlated response hypothesis for the evolution and maintenance of male mating preferences in <i>Drosophila serrata</i> . Journal of Evolutionary Biology, 2014, 27, 2106-2112.	0.8	6
84	On Male Harm: How It Is Measured and How It Evolves in Different Environments. American Naturalist, 2021, 198, 219-231.	1.0	6
85	Analyzing and Comparing the Geometry of Individual Fitness Surfaces. , 2013, , 126-149.		6
86	Experimental Tests of Founder-Flush: A Reply to Templeton. Evolution; International Journal of Organic Evolution, 1999, 53, 1632.	1.1	4
87	EXPERIMENTAL TESTS OF FOUNDER-FLUSH: A REPLY TO TEMPLETON. Evolution; International Journal of Organic Evolution, 1999, 53, 1632-1633.	1.1	4
88	Sexual dimorphism in epicuticular compounds despite similar sexual selection in sex roleâ€reversed seed beetles. Journal of Evolutionary Biology, 2017, 30, 2005-2016.	0.8	2
89	Territoriality in Drosophila: indirect effects and covariance with body mass and metabolic rate. Behavioral Ecology, 2021, 32, 679-685.	1.0	2
90	DIVERGENT ENVIRONMENTS AND POPULATION BOTTLENECKS FAIL TO GENERATE PREMATING ISOLATION IN DROSOPHILA PSEUDOOBSCURA. Evolution; International Journal of Organic Evolution, 2003, 57, 2557.	1.1	1

#	Article	IF	CITATIONS
91	I.18 Ecological Speciation: Natural Selection and the Formation of New Species. , 2009, , 134-142.		1
92	Epicuticular Compounds of Protopiophila litigata (Diptera: Piophilidae): Identification and Sexual Selection Across Two Years in the Wild. Annals of the Entomological Society of America, 2020, 113, 40-49.	1.3	0
93	Quantifying male harm and its divergence. Evolution; International Journal of Organic Evolution, 2022, 76, 829-836.	1.1	Ο