

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6361734/publications.pdf Version: 2024-02-01

MADOL

#	Article	lF	CITATIONS
1	Effect of Co-content on the structure and activity of Co–Al hydrotalcite-like materials as catalyst precursors for CO oxidation. Applied Catalysis A: General, 2011, 399, 242-251.	4.3	61
2	Iron doped TiO2 films and their photoactivity in nitrobenzene removal from water. Applied Surface Science, 2018, 455, 201-215.	6.1	61
3	Ni–Al layered double hydroxides as catalyst precursors for CO2 removal by methanation. Reaction Kinetics, Mechanisms and Catalysis, 2012, 105, 79-99.	1.7	58
4	Effect of silver modification on structure and catalytic performance of Ni-Mg/diatomite catalysts for edible oil hydrogenation. Journal of Molecular Catalysis A, 2009, 297, 54-62.	4.8	32
5	The influence of the support on the properties of nickel catalysts for edible oil hydrogenation. Applied Catalysis A: General, 2006, 299, 73-83.	4.3	29
6	Ethanol dehydrogenation over Cu catalysts promoted with Ni: Stability control. Applied Catalysis A: General, 2020, 591, 117401.	4.3	24
7	Hydrogen production via water-gas shift reaction over gold supported on Ni-based layered double hydroxides. International Journal of Hydrogen Energy, 2021, 46, 458-473.	7.1	14
8	Water-gas shift reaction over nickel hydroxides. Catalysis Letters, 1995, 31, 245-252.	2.6	13
9	Effect of the support and the reduction temperature on the formation of metallic nickel phase in Ni/silica gel precursors of vegetable oil hydrogenation catalysts. Russian Journal of Physical Chemistry A, 2011, 85, 2392-2398.	0.6	12
10	Characteristics and catalytic behavior of supported NiMgAg/D catalysts in the partial hydrogenation of soybean oil. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 105-127.	1.7	10
11	Improved Water–Gas Shift Performance of Au/NiAl LDHs Nanostructured Catalysts via CeO2 Addition. Nanomaterials, 2021, 11, 366.	4.1	9
12	Influence of Ni/SiO2 activity on the reaction pathway in sunflower oil hydrogenation. Chemical Engineering Research and Design, 2015, 100, 72-80.	5.6	7
13	Water–gas shift reaction over gold deposited on NiAl layered double hydroxides. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 187-203.	1.7	7
14	Exploring the role of promoters (Au, Cu and Re) in the performance of Ni–Al layered double hydroxides for water-gas shift reaction. International Journal of Hydrogen Energy, 2023, 48, 11998-12014.	7.1	7
15	Catalytic oxidation of sulphide ions to elementary sulphur in aqueous solutions over transition metal oxides. Applied Catalysis B: Environmental, 1996, 8, 365-373.	20.2	6
16	Selective reduction of nitrogen oxides by hydrocarbons on hydrotalcite Co and Ni catalysts. Catalysis in Industry, 2010, 2, 62-66.	0.7	6
17	Catalytic performance of Ni-Al layered double hydroxides in CO purification processes. Russian Journal of Physical Chemistry A, 2013, 87, 2152-2159.	0.6	6
18	The state of nickel in the silver modified NiMg/SiO2 vegetable oil hydrogenation catalysts. Russian Journal of Physical Chemistry A, 2009, 83, 1461-1467.	0.6	5

IF # ARTICLE CITATIONS Perlite as a potential support for nickel catalyst in the process of sunflower oil hydrogenation. Russian Journal of Physical Chemistry A, 2015, 89, 2359-2366. Ni–Al Layered Double Hydroxides as Precursors of Ceramic Pigments. , 2016, , 205-220. 20 3 Supported Nickel-Based Catalysts for Partial Hydrogenation of Edible Oils., 0,,. New Insights on the Nickel State Deposited by Hydrazine Wet-Chemical Synthesis Route in the Ni/BCY15 22 4.1 2 Proton-Conducting SOFC Anode. Nanomaterials, 2021, 11, 3224. Catalytic performance stability of Mo, W and Re-based sour water–gas shift catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 797-812. Structural study of the MO–Nd2O3 system obtained by a sol–gel procedure. Comptes Rendus Chimie, 24 0.5 0 2018, 21, 232-246. Role of Water in Synthesis of Higher Alcohols from CO and H2 over MoS2. Collection of Czechoslovak Chemical Communications, 1997, 62, 130-135.

Margi