
Ehsan Hosseini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6361703/publications.pdf Version: 2024-02-01

FHEAN HOSSEINI

#	Article	IF	CITATIONS
1	A review of mechanical properties of additively manufactured Inconel 718. Additive Manufacturing, 2019, 30, 100877.	3.0	211
2	Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening. Materials and Design, 2017, 133, 349-362.	7.0	104
3	Stress recovery and cyclic behaviour of an Fe–Mn–Si shape memory alloy after multiple thermal activation. Smart Materials and Structures, 2018, 27, 025009.	3.5	67
4	On the evolution of flow stress during constrained groove pressing of pure copper sheet. Computational Materials Science, 2009, 45, 855-859.	3.0	51
5	The effect of ECAP die shape on nano-structure of materials. Computational Materials Science, 2009, 44, 962-967.	3.0	45
6	Dislocation structure and strength evolution of heavily deformed tantalum. International Journal of Refractory Metals and Hard Materials, 2009, 27, 605-610.	3.8	43
7	Optimum groove pressing die design to achieve desirable severely plastic deformed sheets. Materials & Design, 2010, 31, 94-103.	5.1	41
8	Stress regime-dependent creep constitutive model considerations in finite element continuum damage mechanics. International Journal of Damage Mechanics, 2013, 22, 1186-1205.	4.2	38
9	A hybrid model on severe plastic deformation of copper. Computational Materials Science, 2009, 44, 1107-1115.	3.0	31
10	A new microstructural model based on dislocation generation and consumption mechanisms through severe plastic deformation. Computational Materials Science, 2011, 50, 1123-1135.	3.0	31
11	Interface strength and mechanical properties of Inconel 718 processed sequentially by casting, milling, and direct metal deposition. Journal of Materials Processing Technology, 2021, 291, 117021.	6.3	24
12	Integration of physically based models into FE analysis: Homogeneity of copper sheets under large plastic deformations. Computational Materials Science, 2010, 48, 166-173.	3.0	23
13	Creep constitutive model considerations for high-temperature finite element numerical simulations. Journal of Strain Analysis for Engineering Design, 2012, 47, 341-349.	1.8	22
14	Temperature dependent representation for Chaboche kinematic hardening model. Materials at High Temperatures, 2015, 32, 404-412.	1.0	22
15	Implementation of a constitutive model in finite element method for intense deformation. Materials & Design, 2011, 32, 487-494.	5.1	20
16	Stress-based model on work hardening and softening of materials at large strains: corrugation process of sheet. Journal of Materials Science, 2009, 44, 1212-1218.	3.7	17
17	The LICON methodology for predicting long-time uniaxial creep rupture strength of materials. International Journal of Pressure Vessels and Piping, 2013, 111-112, 27-35.	2.6	12
18	Modeling of induced empirical constitutive relations on materials with FCC, BCC, and HCP crystalline structures: severe plastic deformation. International Journal of Advanced Manufacturing Technology, 2010, 47, 1033-1039.	3.0	11

Ehsan Hosseini

#	Article	IF	CITATIONS
19	Coupling kinetic dislocation model and Monte Carlo algorithm for recrystallized microstructure modeling of severely deformed copper. Journal of Materials Science, 2008, 43, 6081-6086.	3.7	10
20	Experience with using the LICON methodology for predicting long term creep behaviour in materials. International Journal of Pressure Vessels and Piping, 2012, 92, 70-76.	2.6	10
21	Cracking due to combined TMF and HCF loading in cast iron. International Journal of Fatigue, 2017, 99, 279-285.	5.7	10
22	Creep behaviour of AISI 316H stainless steel under stress-varying creep loading conditions: primary creep regeneration. Materials at High Temperatures, 2019, 36, 240-252.	1.0	10
23	ETMB model investigation of flow softening during severe plastic deformation. Computational Materials Science, 2009, 46, 902-905.	3.0	9
24	Effect of prior deformation on the subsequent creep and anelastic recovery behaviour of an advanced martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 717, 68-77.	5.6	9
25	Modelling heat-to-heat variability in high temperature cyclic deformation behaviour. Materials at High Temperatures, 2015, 32, 347-354.	1.0	8
26	Adaptive local-global multiscale approach for thermal simulation of the selective laser melting process. Additive Manufacturing, 2020, 36, 101518.	3.0	8
27	The investigation of primary creep regeneration for 10%Cr martensitic steel: Unified constitutive modelling. International Journal of Mechanical Sciences, 2021, 190, 106044.	6.7	8
28	Cyclic plasticity and fatigue damage of CrMnFeCoNi high entropy alloy fabricated by laser powder-bed fusion. Additive Manufacturing, 2020, 36, 101584.	3.0	7
29	Effect of prior deformation on the subsequent creep and anelastic recovery behaviour of an advanced martensitic steel: Unified constitutive modelling. International Journal of Mechanical Sciences, 2020, 176, 105546.	6.7	7
30	Primary creep regeneration in 10%Cr martensitic steel: In-situ and ex-situ microstructure studies. Materials and Design, 2021, 199, 109405.	7.0	6
31	In-situ and ex-situ microstructure studies and dislocation-based modelling for primary creep regeneration response of 316H stainless steel. Acta Materialia, 2021, 216, 117130.	7.9	6
32	Comparison of primary creep regeneration and anelastic recovery behaviour of 316H austenitic and 10%Cr martensitic steels. Mechanics of Materials, 2020, 148, 103474.	3.2	6
33	Exploring the applicability of the LICON methodology for the creep assessment of a dissimilar metal weld. International Journal of Pressure Vessels and Piping, 2013, 111-112, 162-172.	2.6	5
34	Advanced constitutive modelling for creep-fatigue assessment of high temperature components. Materials at High Temperatures, 2018, 35, 504-512.	1.0	5
35	A temperature-dependent asymmetric constitutive model for cast irons under cyclic loading conditions. Journal of Strain Analysis for Engineering Design, 2018, 53, 106-114.	1.8	4
36	Creep behaviour of a high chromium martensitic steel under stress varying creep loading conditions: Primary creep regeneration (PCR). International Journal of Pressure Vessels and Piping, 2020, 187, 104188.	2.6	4

Ehsan Hosseini

#	Article	IF	CITATIONS
37	Temperature and stress–regime dependent primary–secondary–tertiary creep constitutive model. Materials at High Temperatures, 2015, 32, 384-389.	1.0	3
38	Thermally activated dependence of fatigue behaviour of CrMnFeCoNi high entropy alloy fabricated by laser powder-bed fusion. Additive Manufacturing, 2022, 51, 102600.	3.0	3
39	Influence of deformation during T10 treatment on microstructure/hardness/electrical conductivity of Cu–Cr alloy produced in nonprotected atmosphere. Materials Science and Technology, 2009, 25, 1283-1288.	1.6	1
40	Review of current status of the LICON methodology. Strength, Fracture and Complexity, 2015, 9, 61-70.	0.3	1
41	A review of the LICON methodology for predicting the long term creep rupture strength of materials. International Journal of Pressure Vessels and Piping, 2015, 129-130, 12-18.	2.6	1
42	The effect of temperature on TMF(HCF) crack initiation endurance. International Journal of Fatigue, 2020, 135, 105559.	5.7	1