Sanjay Saxena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6361601/publications.pdf

Version: 2024-02-01

687220 752573 42 542 13 20 citations h-index g-index papers 44 44 44 238 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Brain tumor segmentation and overall survival period prediction in glioblastoma multiforme using radiomic features. Concurrency Computation Practice and Experience, 2022, 34, e6501.	1.4	15
2	Effect of learning parameters on the performance of U-Net Model in segmentation of Brain tumor. Multimedia Tools and Applications, 2022, 81, 34717-34735.	2.6	10
3	An empirical study of different machine learning techniques for brain tumor classification and subsequent segmentation using hybrid texture feature. Machine Vision and Applications, 2022, 33, 1.	1.7	31
4	Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review. Computers in Biology and Medicine, 2022, 142, 105204.	3.9	34
5	Bias Investigation in Artificial Intelligence Systems for Early Detection of Parkinson's Disease: A Narrative Review. Diagnostics, 2022, 12, 166.	1.3	23
6	Cardiovascular/Stroke Risk Stratification in Parkinson's Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review. Metabolites, 2022, 12, 312.	1.3	21
7	A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review. Diagnostics, 2022, 12, 722.	1.3	20
8	Convolutional neural network and its pretrained models for image classification and object detection: A survey. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	13
9	An Extensive Study of SegNet Model in Automatic Brain Tumor Segmentation Using Multi-modal MR Scans. Lecture Notes in Networks and Systems, 2022, , 359-370.	0.5	1
10	Deep learning-based ensemble model for brain tumor segmentation using multi-parametric MR scans. Open Computer Science, 2022, 12, 211-226.	1.3	9
11	Clinical measures, radiomics, and genomics offer synergistic value in Al-based prediction of overall survival in patients with glioblastoma. Scientific Reports, 2022, 12, .	1.6	20
12	Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review. Diagnostics, 2022, 12, 1543.	1.3	7
13	Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers, 2022, 14, 2860.	1.7	38
14	Survey and Analysis of Content-Based Image Retrieval Systems. Lecture Notes in Electrical Engineering, 2021, , 427-433.	0.3	2
15	Malaria Parasites Detection Using Deep Neural Network. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 209-222.	0.3	3
16	Brain Tumour Segmentation in FLAIR MRI Using Sliding Window Texture Feature Extraction Followed by Fuzzy C-Means Clustering. International Journal of Healthcare Information Systems and Informatics, 2021, 16, 1-20.	1.0	15
17	Artificial intelligence-based hybrid deep learning models for image classification: The first narrative review. Computers in Biology and Medicine, 2021, 137, 104803.	3.9	81
18	Brain Tumor Segmentation from 3D MRI Slices Using Cascading Convolutional Neural Network. Lecture Notes in Electrical Engineering, 2021, , 119-126.	0.3	8

#	Article	IF	CITATIONS
19	Image Classification for Binary Classes Using Deep Convolutional Neural Network: An Experimental Study. Studies in Computational Intelligence, 2021, , 197-209.	0.7	3
20	Review on Brain Tumor Segmentation: Hard and Soft Computing Approaches. Advances in Intelligent Systems and Computing, 2021, , 190-200.	0.5	1
21	Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine. Cancers, 2021, 13, 5921.	1.7	29
22	Comprehensive Review of Abdominal Image Segmentation using Soft and Hard Computing Approaches. , 2020, , .		4
23	Medical image segmentation: hard and soft computing approaches. SN Applied Sciences, 2020, 2, 1.	1.5	10
24	Deep Learning in Computational Neuroscience. Advances in Computer and Electrical Engineering Book Series, 2020, , 43-63.	0.2	5
25	Comprehensive Analysis of the Uses of GPU and CUDA in Soft-Computing Techniques. , 2019, , .		2
26	Justification of STL-10 dataset using a competent CNN model trained on CIFAR-10., 2019, , .		4
27	Validation of Random Dataset Using an Efficient CNN Model Trained on MNIST Handwritten Dataset. , 2019, , .		12
28	Maximum Payload for Digital Image Steganography Obtained by Mixed Edge Detection Mechanism. , 2019,		4
29	Mammogram Segmentation Methods: A Brief Review. , 2019, , .		4
30	Advanced Approaches for Medical Image Segmentation. , 2019, , 153-172.		6
31	Brain Tumor and Its Segmentation From Brain MRI Sequences. Advances in Medical Technologies and Clinical Practice Book Series, 2019, , 39-60.	0.3	3
32	Brain Tumor Segmentation by Texture Feature Extraction with the Parallel Implementation of Fuzzy C-Means using CUDA on GPU. , 2018 , , .		2
33	Secure Authentication Protocol for 5G Enabled IoT Network., 2018,,.		7
34	Review of Brain Tumor Segmentation and Classification. , 2018, , .		27
35	Parallel Image Processing Techniques, Benefits and Limitations. Research Journal of Applied Sciences, Engineering and Technology, 2016, 12, 223-238.	0.1	21
36	An Automated System for Atlas Based Multiple Organ Segmentation of Abdominal CT Images. British Journal of Mathematics & Computer Science, 2016, 12, 1-14.	0.3	17

#	Article	IF	Citations
37	Cellular Image Segmentation using Morphological Operators and Extraction of Features for Quantitative Measurement. Biosciences, Biotechnology Research Asia, 2016, 13, 1101-1112.	0.2	3
38	Image registration techniques using parallel computing in multicore environment and its applications in medical imaging: An overview. , 2014, , .		5
39	Parallel computation of mutual information in multicore environment & amp; its applications in medical image registration., 2014,,.		2
40	An intelligent system for segmenting an abdominal image in multi core architecture. , 2013, , .		5
41	Optimal Sublogarithmic Time Parallel Algorithms on Rooted Forests. Algorithmica, 2000, 27, 187-197.	1.0	O
42	Parallel algorithms for the longest common subsequence problem. , 0, , .		14