Kiyotake Ishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6361225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A mechanistic framework for cardiometabolic and coronary artery diseases. , 2022, 1, 85-100.		51
2	Left Atrial Remodeling and Dysfunction in Swine Models of Mitral Regurgitation. American Journal of Physiology - Heart and Circulatory Physiology, 2022, , .	3.2	1
3	Endobronchial Aerosolized AAV1.SERCA2a Gene Therapy in a Pulmonary Hypertension Pig Model: Addressing the Lung Delivery Bottleneck. Human Gene Therapy, 2022, 33, 550-559.	2.7	4
4	<scp>SUMOylation</scp> does not affect cardiac troponin I stability but alters indirectly the development of force in response to Ca ²⁺ . FEBS Journal, 2022, 289, 6267-6285.	4.7	2
5	Distribution of cardiomyocyte-selective adeno-associated virus serotype 9 vectors in swine following intracoronary and intravenous infusion. Physiological Genomics, 2022, 54, 261-272.	2.3	5
6	Left Ventricular Assist Devices for Acute Myocardial Infarct Size Reduction: Meta-analysis. Journal of Cardiovascular Translational Research, 2021, 14, 467-475.	2.4	6
7	Myocardial injury characterized by elevated cardiac troponin and inâ€hospital mortality of COVIDâ€19: An insight from a metaâ€analysis. Journal of Medical Virology, 2021, 93, 51-55.	5.0	38
8	Empagliflozin Ameliorates Diastolic Dysfunction and Left Ventricular Fibrosis/Stiffness in Nondiabetic HeartÂFailure. JACC: Cardiovascular Imaging, 2021, 14, 393-407.	5.3	114
9	Targeted delivery of therapeutic agents to the heart. Nature Reviews Cardiology, 2021, 18, 389-399.	13.7	51
10	Effects of Therapeutic Hypothermia on Normal and Ischemic Heart. Frontiers in Cardiovascular Medicine, 2021, 8, 642843.	2.4	7
11	Editorial: Science in Mechanical Circulatory Support. Frontiers in Cardiovascular Medicine, 2021, 8, 676595.	2.4	0
12	Impaired Diastolic Function Predicts Improved Ischemic Myocardial Flow by Mechanical Left Ventricular Unloading in a Swine Model of Ischemic Heart Failure. Frontiers in Cardiovascular Medicine, 2021, 8, 795322.	2.4	2
13	Echocardiographic Left Ventricular Mass Estimation: Two-Dimensional Area-Length Method is Superior to M-Mode Linear Method in Swine Models of Cardiac Diseases. Journal of Cardiovascular Translational Research, 2020, 13, 648-658.	2.4	4
14	AAV shedding after intracoronary delivery: just a safety concern?. Gene Therapy, 2020, 27, 111-112.	4.5	0
15	Imaging Cardiovascular and Lung Macrophages With the Positron Emission Tomography Sensor ⁶⁴ Cu-Macrin in Mice, Rabbits, and Pigs. Circulation: Cardiovascular Imaging, 2020, 13, e010586.	2.6	32
16	Impaired left ventricular global longitudinal strain is associated with elevated left ventricular filling pressure after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1474-H1481.	3.2	2
17	Correlation between myocardial strain and adverse remodeling in a non-diabetic model of heart failure following empagliflozin therapy. Expert Review of Cardiovascular Therapy, 2020, 18, 635-642.	1.5	7
18	Novel Porcine Model of Coronary Dissection Reveals the Impact of Impella on Dissected Coronary Arterial Hemodynamics. Frontiers in Cardiovascular Medicine, 2020, 7, 162.	2.4	0

Κιγοτακε Ishikawa

#	Article	IF	CITATIONS
19	Body temperature correlates with mortality in COVID-19 patients. Critical Care, 2020, 24, 298.	5.8	81
20	Comparison of Hemodynamic Support by Impella vs. Peripheral Extra-Corporeal Membrane Oxygenation: A Porcine Model of Acute Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2020, 7, 99.	2.4	10
21	Consideration of clinical translation of cardiac AAV gene therapy. Cell & Gene Therapy Insights, 2020, 6, 609-615.	0.1	5
22	Speckle-Tracking Echocardiographic Strain Analysis Reliably Estimates Degree of Acute LV Unloading During Mechanical LV Support by Impella. Journal of Cardiovascular Translational Research, 2019, 12, 135-141.	2.4	6
23	FTO-Dependent N ⁶ -Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation, 2019, 139, 518-532.	1.6	369
24	The Art of War in Drug Development. JACC Basic To Translational Science, 2019, 4, 715-716.	4.1	1
25	Experimental models of cardiac physiology and pathology. Heart Failure Reviews, 2019, 24, 601-615.	3.9	23
26	Empagliflozin Ameliorates Adverse LeftÂVentricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. Journal of the American College of Cardiology, 2019, 73, 1931-1944.	2.8	411
27	Targeted Gene Delivery through the Respiratory System: Rationale for Intratracheal Gene Transfer. Journal of Cardiovascular Development and Disease, 2019, 6, 8.	1.6	19
28	A Novel Large Animal Model of Thrombogenic Coronary Microembolization. Frontiers in Cardiovascular Medicine, 2019, 6, 157.	2.4	13
29	Deletion of delta-like 1 homologue accelerates fibroblast–myofibroblast differentiation and induces myocardial fibrosis. European Heart Journal, 2019, 40, 967-978.	2.2	62
30	Recent highlights and advances in cardiac gene therapy. Discovery Medicine, 2019, 28, 229-235.	0.5	3
31	Left Ventricular Unloading Using an Impella CP Improves Coronary Flow and Infarct Zone Perfusion in Ischemic Heart Failure. Journal of the American Heart Association, 2018, 7, .	3.7	65
32	Echocardiographic and hemodynamic assessment for predicting early clinical events in severe acute mitral regurgitation. International Journal of Cardiovascular Imaging, 2018, 34, 171-175.	1.5	7
33	Reduced longitudinal contraction is associated with ischemic mitral regurgitation after posterior MI. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H322-H329.	3.2	6
34	Stem cell therapy for acute myocardial infarction. Coronary Artery Disease, 2018, 29, 89-91.	0.7	6
35	Atrial stretch and arrhythmia after myocardial infarction. Aging, 2018, 11, 11-12.	3.1	5
36	Primary Effect of SERCA2a Gene Transfer on Conduction Reserve in Chronic Myocardial Infarction. Journal of the American Heart Association, 2018, 7, e009598.	3.7	16

Κιγοτακε Ishikawa

#	Article	IF	CITATIONS
37	Human Cardiac Gene Therapy. Circulation Research, 2018, 123, 601-613.	4.5	75
38	LV-MEMS. Circulation: Cardiovascular Interventions, 2018, 11, e006768.	3.9	1
39	Translational Aspects of Adeno-Associated Virus–Mediated Cardiac Gene Therapy. Human Gene Therapy, 2018, 29, 1341-1351.	2.7	7
40	Acute Left Ventricular Unloading Reduces Atrial Stretch and InhibitsÂAtrialÂArrhythmias. Journal of the American College of Cardiology, 2018, 72, 738-750.	2.8	27
41	Acute Mechanical LV Unloading in Ischemia Reperfusion Injury. Journal of the American College of Cardiology, 2018, 72, 515-517.	2.8	3
42	Rat Model of Cardiotoxic Drug-Induced Cardiomyopathy. Methods in Molecular Biology, 2018, 1816, 221-232.	0.9	11
43	Experimental Models of Cardiovascular Diseases: Overview. Methods in Molecular Biology, 2018, 1816, 3-14.	0.9	15
44	A Pig Model of Myocardial Infarction: Catheter-Based Approaches. Methods in Molecular Biology, 2018, 1816, 281-294.	0.9	14
45	Pig Model of Increased Cardiac Afterload Induced by Ascending Aortic Banding. Methods in Molecular Biology, 2018, 1816, 337-342.	0.9	4
46	Swine Model of Mitral Regurgitation Induced Heart Failure. Methods in Molecular Biology, 2018, 1816, 327-335.	0.9	5
47	Chronic Pulmonary Artery Embolization Models in Large Animals. Methods in Molecular Biology, 2018, 1816, 353-366.	0.9	1
48	Modeling Pulmonary Hypertension: A Pig Model of Postcapillary Pulmonary Hypertension. Methods in Molecular Biology, 2018, 1816, 367-383.	0.9	6
49	Safety and longâ€ŧerm efficacy of AAV1.SERCA2a using nebulizer delivery in a pig model of pulmonary hypertension. Pulmonary Circulation, 2018, 8, 1-4.	1.7	18
50	From bedside to bench and back again: translational studies of mechanical unloading of the left ventricle to promote recovery after acute myocardial infarction. F1000Research, 2018, 7, 1852.	1.6	7
51	Abstract 301: An m6A Demethylase, FTO Mediates Post-transcriptional mRNA Modifications to Regulate Cardiac and Cardiomyocyte Function. Circulation Research, 2018, 123, .	4.5	Ο
52	Introducing Genes to the Heart. Circulation Research, 2017, 120, 33-35.	4.5	27
53	The Transgenic Diabetic Pig Heart. Journal of the American College of Cardiology, 2017, 69, 144-146.	2.8	1
54	Editorial Commentary: Clinical gene therapy trials for heart failure: Did they fail?. Trends in Cardiovascular Medicine, 2017, 27, 223-224.	4.9	0

ΚΙΥΟΤΑΚΕ ISHIKAWA

#	Article	IF	CITATIONS
55	Cardiac Gene Delivery in Large Animal Models: Antegrade Techniques. Methods in Molecular Biology, 2017, 1521, 227-235.	0.9	8
56	Inhaled Gene Transfer for Pulmonary Circulation. Methods in Molecular Biology, 2017, 1521, 339-349.	0.9	7
57	Current Methods in Cardiac Gene Therapy: Overview. Methods in Molecular Biology, 2017, 1521, 3-14.	0.9	5
58	MYOCARDIAL OXYGENATION USING BLOOD LEVEL-OXYGEN DEPENDENT SEQUENCE IN MAGNETIC RESONANCE DETERMINES MYOCARDIAL ENERGETICS AND CAPILLARY DENSITY. Journal of the American College of Cardiology, 2017, 69, 1439.	2.8	0
59	Gene Transfer to Rodent Hearts In Vivo. Methods in Molecular Biology, 2017, 1521, 195-204.	0.9	3
60	Protein Phosphatase Inhibitor-1 GeneÂTherapy in a Swine Model of NonischemicÂHeart Failure. Journal of the American College of Cardiology, 2017, 70, 1744-1756.	2.8	30
61	Increased Afterload Following MyocardialÂInfarction Promotes Conduction-Dependent Arrhythmias ThatÂAre Unmasked by Hypokalemia. JACC Basic To Translational Science, 2017, 2, 258-269.	4.1	15
62	Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai Translational Mission. Circulation Research, 2017, 121, 1316-1319.	4.5	2
63	Direct Myocardial Injection of Vectors. Methods in Molecular Biology, 2017, 1521, 237-248.	0.9	5
64	Route TESI. Circulation Research, 2017, 120, 1055-1056.	4.5	2
65	Gene therapy for heart failure: status quo and quo vadis. Discovery Medicine, 2017, 23, 371-377.	0.5	1
66	Intratracheal Gene Delivery of SERCA2a Ameliorates Chronic Post-Capillary Pulmonary Hypertension. Journal of the American College of Cardiology, 2016, 67, 2032-2046.	2.8	62
67	Sphingosine-1-Phosphate Receptor Agonist Fingolimod Increases Myocardial Salvage and Decreases Adverse Postinfarction Left Ventricular Remodeling in a Porcine Model of Ischemia/Reperfusion. Circulation, 2016, 133, 954-966.	1.6	155
68	Gene therapy for the treatment of heart failure: promise postponed. European Heart Journal, 2016, 37, 1651-1658.	2.2	110
69	Myocardial Delivery of Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient Expression. Molecular Therapy, 2016, 24, 66-75.	8.2	82
70	Adeno-associated virus-mediated gene therapy in cardiovascular disease. Current Opinion in Cardiology, 2015, 30, 228-234.	1.8	39
71	Response to Letter Regarding Article, "Intracoronary Injection of Large Stem Cells: Size Mattersâ€. Circulation: Cardiovascular Interventions, 2015, 8, e002855.	3.9	0
72	Intracoronary Injection of Large Stem Cells. Circulation: Cardiovascular Interventions, 2015, 8, .	3.9	8

#	Article	IF	CITATIONS
73	Revisiting Old Players in the Revitalized Field of CardiovascularÂGene Therapyâ^—. Journal of the American College of Cardiology, 2015, 66, 166-168.	2.8	2
74	Reply to "Letter to the editor: Characterizing preclinical model of ischemic heart failure: difference between LAD and LCx infarctions― American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H365-H366.	3.2	1
75	Increased Stiffness Is the Major Early Abnormality in a Pig Model of Severe Aortic Stenosis and Predisposes to Congestive Heart Failure in the Absence of Systolic Dysfunction. Journal of the American Heart Association, 2015, 4, .	3.7	49
76	Stem Cell Factor Gene Transfer Improves Cardiac Function After Myocardial Infarction in Swine. Circulation: Heart Failure, 2015, 8, 167-174.	3.9	33
77	Combination Proximal Pulmonary Artery Coiling and Distal Embolization Induces Chronic Elevations in Pulmonary Artery Pressure in Swine. PLoS ONE, 2015, 10, e0124526.	2.5	15
78	Characterizing preclinical models of ischemic heart failure: differences between LAD and LCx infarctions. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1478-H1486.	3.2	43
79	Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1204-H1215.	3.2	82
80	Cardiac I-1c Overexpression With Reengineered AAV Improves Cardiac Function in Swine Ischemic Heart Failure. Molecular Therapy, 2014, 22, 2038-2045.	8.2	70
81	Patterns of Pulmonary Vein Potential Disappearance During Encircling Ipsilateral Pulmonary Vein Isolation Can Predict Recurrence of Atrial Fibrillation. Circulation Journal, 2014, 78, 601-609.	1.6	4
82	Percutaneous Approaches for Efficient Cardiac Gene Delivery. Journal of Cardiovascular Translational Research, 2013, 6, 649-659.	2.4	28
83	<i>SUMO-1</i> Gene Transfer Improves Cardiac Function in a Large-Animal Model of Heart Failure. Science Translational Medicine, 2013, 5, 211ra159.	12.4	96
84	Treatment of Sirolimus-Eluting Stent Restenosis: Additional Stent, Balloon Angioplasty, and Coronary Artery Bypass Graft. Journal of Cardiac Surgery, 2013, 28, 97-101.	0.7	1
85	The incidence and clinical significance of non-isolation of the pulmonary vein carina after encircling ipsilateral pulmonary veins isolation for paroxysmal atrial fibrillation: a pitfall of the double-Lasso technique. Europace, 2013, 15, 33-40.	1.7	20
86	AAV9.I-1c Delivered via Direct Coronary Infusion in a Porcine Model of Heart Failure Improves Contractility and Mitigates Adverse Remodeling. Circulation: Heart Failure, 2013, 6, 310-317.	3.9	64
87	Therapeutic Efficacy of AAV1.SERCA2a in Monocrotaline-Induced Pulmonary Arterial Hypertension. Circulation, 2013, 128, 512-523.	1.6	97
88	Stimulating Myocardial Regeneration with Periostin Peptide in Large Mammals Improves Function Post-Myocardial Infarction but Increases Myocardial Fibrosis. PLoS ONE, 2013, 8, e59656.	2.5	62
89	Assessing left ventricular systolic dysfunction after myocardial infarction: are ejection fraction and dP/d <i>t</i> <ur>dP/d<i>t</i>_{max} complementary or redundant?. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1423-H1428.</ur>	3.2	49
90	Impact of chronic kidney disease on a re-percutaneous coronary intervention for sirolimus-eluting stent restenosis. Coronary Artery Disease, 2012, 23, 528-532.	0.7	9

ΚΙΥΟΤΑΚΕ ISHIKAWA

#	Article	IF	CITATIONS
91	Renin–angiotensin system inhibitors can suppress atrial fibrillation recurrence after encircling ipsilateral pulmonary vein isolation in patients with a non-dilated left atrium. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2012, 13, 487-495.	1.7	6
92	Concomitant Intravenous Nitroglycerin With Intracoronary Delivery of AAV1.SERCA2a Enhances Gene Transfer in Porcine Hearts. Molecular Therapy, 2012, 20, 565-571.	8.2	34
93	Neutralizing Antibodies Against AAV Serotypes 1, 2, 6, and 9 in Sera of Commonly Used Animal Models. Molecular Therapy, 2012, 20, 73-83.	8.2	143
94	Temporal changes of strain parameters in the progress of chronic ischemia: with comparison to transmural infarction. International Journal of Cardiovascular Imaging, 2012, 28, 1671-1681.	1.5	6
95	Comparison of Left Ventricular Stroke Volume Assessment by Two―and Threeâ€Dimensional Echocardiography in a Swine Model of Acute Myocardial Infarction Validated by Thermodilution Method. Echocardiography, 2012, 29, 1091-1095.	0.9	11
96	Gene Therapy for Heart Failure. Circulation Research, 2012, 110, 777-793.	4.5	130
97	Difference of intensity and disparity in impact of climate on several vascular diseases. Heart and Vessels, 2012, 27, 1-9.	1.2	28
98	Management of drug-eluting stent restenosis. Journal of Invasive Cardiology, 2012, 24, 178-82.	0.4	14
99	Gene Transfer for Ischemic Heart Failure in a Preclinical Model. Journal of Visualized Experiments, 2011, , .	0.3	20
100	Ventricular Arrhythmia in X-linked Emery-Dreifuss Muscular Dystrophy: A Lesson from an Autopsy Case. Internal Medicine, 2011, 50, 459-462.	0.7	9
101	Reninâ€Angiotensin System Blocker Use May Be Associated with Suppression of Atrial Fibrillation Recurrence after Pulmonary Vein Isolation. PACE - Pacing and Clinical Electrophysiology, 2011, 34, 296-303.	1.2	13
102	Gene delivery methods in cardiac gene therapy. Journal of Gene Medicine, 2011, 13, 566-572.	2.8	43
103	Inhibition of PKCα/β With Ruboxistaurin Antagonizes Heart Failure in Pigs After Myocardial Infarction Injury. Circulation Research, 2011, 109, 1396-1400.	4.5	57
104	Development of a preclinical model of ischemic cardiomyopathy in swine. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H530-H537.	3.2	20
105	Multimodality Imaging of Chronic Ischemia. Cardiology Research and Practice, 2011, 2011, 1-4.	1.1	1
106	Sterile Abscess in the Myocardium after Direct Intramyocardial Injection Related to Gene Therapy in a Swine Model. ISRN Cardiology, 2011, 2011, 1-2.	1.6	2
107	SERCA2a Gene Transfer Enhances eNOS Expression and Activity in Endothelial Cells. Molecular Therapy, 2010, 18, 1284-1292.	8.2	61