
Suchol Savagatrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6360984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets. ACS Sensors, 2022, 7, 1514-1523.	4.0	16
2	Rapid Detection of Sepsis: Recent Advances in Biomarker Sensing Platforms. ACS Omega, 2021, 6, 31390-31395.	1.6	13
3	Programmable Emulsions via Nucleophile-Induced Covalent Surfactant Modifications. Chemistry of Materials, 2020, 32, 4663-4671.	3.2	15
4	Fluorescent Janus emulsions for biosensing of <i>Listeria monocytogenes</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11923-11930.	3.3	28
5	Dynamic Complex Emulsions as Amplifiers for On-Chip Photonic Cavity-Enhanced Resonators. ACS Sensors, 2020, 5, 1996-2002.	4.0	14
6	Porous Ion Exchange Polymer Matrix for Ultrasmall Au Nanoparticle-Decorated Carbon Nanotube Chemiresistors. Chemistry of Materials, 2019, 31, 5413-5420.	3.2	17
7	Chemiresistive Sensor Array and Machine Learning Classification of Food. ACS Sensors, 2019, 4, 2101-2108.	4.0	95
8	Precision pH Sensor Based on WO ₃ Nanofiber-Polymer Composites and Differential Amplification. ACS Sensors, 2019, 4, 2593-2598.	4.0	30
9	Rapid Detection of <i>Salmonella enterica</i> via Directional Emission from Carbohydrate-Functionalized Dynamic Double Emulsions. ACS Central Science, 2019, 5, 789-795.	5.3	48
10	Waveguide-based chemo- and biosensors: complex emulsions for the detection of caffeine and proteins. Lab on A Chip, 2019, 19, 1327-1331.	3.1	34
11	Janus Graphene: Scalable Selfâ€Assembly and Solutionâ€Phase Orthogonal Functionalization. Advanced Materials, 2019, 31, e1900438.	11.1	42
12	Morphology-Dependent Luminescence in Complex Liquid Colloids. Journal of the American Chemical Society, 2019, 141, 3802-3806.	6.6	24
13	Carbon Nanotube Chemical Sensors. Chemical Reviews, 2019, 119, 599-663.	23.0	732
14	Modular synthesis of polymers containing 2,5â€di(thiophenyl)â€ <i>N</i> â€arylpyrrole. Journal of Polymer Science Part A, 2018, 56, 1133-1139.	2.5	2
15	Insights into Magneto-Optics of Helical Conjugated Polymers. Journal of the American Chemical Society, 2018, 140, 6501-6508.	6.6	76
16	Stretchable and Degradable Semiconducting Block Copolymers. Macromolecules, 2018, 51, 5944-5949.	2.2	68
17	Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers. Polymer Chemistry, 2018, 9, 4354-4363.	1.9	68
18	Interfacial Polymerization on Dynamic Complex Colloids: Creating Stabilized Janus Droplets. ACS Applied Materials & Interfaces, 2017, 9, 7804-7811.	4.0	14

SUCHOL SAVAGATRUP

#	Article	IF	CITATIONS
19	Janus Emulsions for the Detection of Bacteria. ACS Central Science, 2017, 3, 309-313.	5.3	71
20	Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. Chemical Reviews, 2017, 117, 6467-6499.	23.0	624
21	Modelling the morphology and thermomechanical behaviour of low-bandgap conjugated polymers and bulk heterojunction films. Energy and Environmental Science, 2017, 10, 558-569.	15.6	60
22	Bioâ€Inspired Carbon Monoxide Sensors with Voltageâ€Activated Sensitivity. Angewandte Chemie, 2017, 129, 14254-14258.	1.6	14
23	Bioâ€Inspired Carbon Monoxide Sensors with Voltageâ€Activated Sensitivity. Angewandte Chemie - International Edition, 2017, 56, 14066-14070.	7.2	27
24	Efficient Characterization of Bulk Heterojunction Films by Mapping Gradients by Reversible Contact with Liquid Metal Top Electrodes. Chemistry of Materials, 2017, 29, 389-398.	3.2	11
25	Predicting the Mechanical Properties of Organic Semiconductors Using Coarse-Grained Molecular Dynamics Simulations. Macromolecules, 2016, 49, 2886-2894.	2.2	69
26	Mechanical Properties of Solution-Processed Small-Molecule Semiconductor Films. ACS Applied Materials & Interfaces, 2016, 8, 11649-11657.	4.0	55
27	Effect of Broken Conjugation on the Stretchability of Semiconducting Polymers. Macromolecular Rapid Communications, 2016, 37, 1623-1628.	2.0	87
28	Fatigue in organic semiconductors: Spectroscopic evolution of microstructure due to cyclic loading in poly(3-heptylthiophene). Synthetic Metals, 2016, 217, 144-151.	2.1	12
29	Mechanical Properties of a Library of Low-Band-Gap Polymers. Chemistry of Materials, 2016, 28, 2363-2373.	3.2	125
30	Wearable organic solar cells with high cyclic bending stability: Materials selection criteria. Solar Energy Materials and Solar Cells, 2016, 144, 438-444.	3.0	109
31	[70]PCBM and Incompletely Separated Grades of Methanofullerenes Produce Bulk Heterojunctions with Increased Robustness for Ultra-Flexible and Stretchable Electronics. Chemistry of Materials, 2015, 27, 3902-3911.	3.2	48
32	Yield Point of Semiconducting Polymer Films on Stretchable Substrates Determined by Onset of Buckling. ACS Applied Materials & Interfaces, 2015, 7, 23257-23264.	4.0	60
33	Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates. Nanotechnology, 2015, 26, 045301.	1.3	36
34	Plasticization of PEDOT:PSS by Common Additives for Mechanically Robust Organic Solar Cells and Wearable Sensors. Advanced Functional Materials, 2015, 25, 427-436.	7.8	287
35	Viability of stretchable poly(3-heptylthiophene) (P3HpT) for organic solar cells and field-effect transistors. Synthetic Metals, 2015, 203, 208-214.	2.1	75
36	Role of molecular mixing on the stiffness of polymer:fullerene bulk heterojunction films. Solar Energy Materials and Solar Cells, 2015, 134, 64-72.	3.0	19

SUCHOL SAVAGATRUP

#	Article	IF	CITATIONS
37	Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants. Energy and Environmental Science, 2015, 8, 55-80.	15.6	205
38	Toward intrinsically stretchable organic semiconductors: mechanical properties of high-performance conjugated polymers. , 2014, , .		1
39	Molecularly Stretchable Electronics. Chemistry of Materials, 2014, 26, 3028-3041.	3.2	170
40	Stretching and conformal bonding of organic solar cells to hemispherical surfaces. Energy and Environmental Science, 2014, 7, 370-378.	15.6	62
41	Mechanical Properties of Conjugated Polymers and Polymerâ€Fullerene Composites as a Function of Molecular Structure. Advanced Functional Materials, 2014, 24, 1169-1181.	7.8	209
42	Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells. RSC Advances, 2014, 4, 13635-13643.	1.7	73
43	Best of Both Worlds: Conjugated Polymers Exhibiting Good Photovoltaic Behavior and High Tensile Elasticity. Macromolecules, 2014, 47, 1981-1992.	2.2	138
44	Role of Mechanical Factors in Controlling the Structure–Function Relationship of PFSA Ionomers. Macromolecules, 2012, 45, 7467-7476.	2.2	119