Monita Chatterjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6360703/publications.pdf Version: 2024-02-01

MONITA CHATTERIFE

#	Article	IF	CITATIONS
1	Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure. NeuroImage, 2014, 88, 41-46.	2.1	234
2	Processing F0 with cochlear implants: Modulation frequency discrimination and speech intonation recognition. Hearing Research, 2008, 235, 143-156.	0.9	154
3	Forward masked excitation patterns in multielectrode electrical stimulation. Journal of the Acoustical Society of America, 1998, 103, 2565-2572.	0.5	153
4	Voice emotion recognition by cochlear-implanted children and their normally-hearing peers. Hearing Research, 2015, 322, 151-162.	0.9	113
5	Noise Enhances Modulation Sensitivity in Cochlear Implant Listeners: Stochastic Resonance in a Prosthetic Sensory System?. , 2001, 2, 159-171.		76
6	Accessing the tonotopic organization of the ventral cochlear nucleus by intranuclear microstimulation. IEEE Transactions on Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 1998, 6, 391-399.	1.4	68
7	The use of acoustic cues for phonetic identification: Effects of spectral degradation and electric hearing. Journal of the Acoustical Society of America, 2012, 131, 1465-1479.	0.5	68
8	Recognition of spectrally degraded phonemes by younger, middle-aged, and older normal-hearing listeners. Journal of the Acoustical Society of America, 2008, 124, 3972-3988.	0.5	63
9	Voice emotion perception and production in cochlear implant users. Hearing Research, 2017, 352, 30-39.	0.9	55
10	Effects of Stimulation Mode, Level and Location on Forward-Masked Excitation Patterns in Cochlear Implant Patients. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 15-25.	0.9	51
11	Effects of phase duration and electrode separation on loudness growth in cochlear implant listeners. Journal of the Acoustical Society of America, 2000, 107, 1637-1644.	0.5	50
12	Effects of Cooperating and Conflicting Cues on Speech Intonation Recognition by Cochlear Implant Users and Normal Hearing Listeners. Audiology and Neuro-Otology, 2009, 14, 327-337.	0.6	48
13	Temporal mechanisms underlying recovery from forward masking in multielectrode-implant listeners. Journal of the Acoustical Society of America, 1999, 105, 1853-1863.	0.5	42
14	Detection and rate discrimination of amplitude modulation in electrical hearing. Journal of the Acoustical Society of America, 2011, 130, 1567-1580.	0.5	42
15	Roles of Voice Onset Time and F0 in Stop Consonant Voicing Perception: Effects of Masking Noise and Low-Pass Filtering. Journal of Speech, Language, and Hearing Research, 2013, 56, 1097-1107.	0.7	42
16	Acoustic Cue Integration in Speech Intonation Recognition With Cochlear Implants. Trends in Amplification, 2012, 16, 67-82.	2.4	41
17	The use of auditory and visual context in speech perception by listeners with normal hearing and listeners with cochlear implants. Frontiers in Psychology, 2013, 4, 824.	1.1	39
18	Modulation masking in cochlear implant listeners: envelope versus tonotopic components. Journal of the Acoustical Society of America, 2003, 113, 2042-2053.	0.5	38

Monita Chatterjee

#	Article	IF	CITATIONS
19	Effects of stimulation mode on threshold and loudness growth in multielectrode cochlear implants. Journal of the Acoustical Society of America, 1999, 105, 850-860.	0.5	37
20	Auditory stream segregation with cochlear implants: A preliminary report. Hearing Research, 2006, 222, 100-107.	0.9	36
21	Recognition of interrupted sentences under conditions of spectral degradation. Journal of the Acoustical Society of America, 2010, 127, EL37-EL41.	0.5	36
22	Gender Identification in Younger and Older Adults. Ear and Hearing, 2012, 33, 411-420.	1.0	36
23	Processing of Acoustic Cues in Lexical-Tone Identification by Pediatric Cochlear-Implant Recipients. Journal of Speech, Language, and Hearing Research, 2017, 60, 1223-1235.	0.7	36
24	Effects of Age and Hearing Loss on the Recognition of Emotions in Speech. Ear and Hearing, 2019, 40, 1069-1083.	1.0	35
25	Cochlear mechanisms of frequency and intensity coding. I. The place code for pitch. Hearing Research, 1997, 111, 65-75.	0.9	34
26	Within-channel gap detection using dissimilar markers in cochlear implant listeners. Journal of the Acoustical Society of America, 1998, 103, 2515-2519.	0.5	31
27	Noise improves modulation detection by cochlear implant listeners at moderate carrier levels. Journal of the Acoustical Society of America, 2005, 118, 993-1002.	0.5	31
28	Deficits in the pitch sensitivity of cochlear-implanted children speaking English or Mandarin. Frontiers in Neuroscience, 2014, 8, 282.	1.4	31
29	Toddlers' recognition of noise-vocoded speech. Journal of the Acoustical Society of America, 2013, 133, 483-494.	0.5	30
30	A tonal-language benefit for pitch in normally-hearing and cochlear-implanted children. Scientific Reports, 2019, 9, 109.	1.6	29
31	Maturation of cochlear nonlinearity as measured by distortion product otoacoustic emission suppression growth in humans. Journal of the Acoustical Society of America, 2003, 114, 932-943.	0.5	28
32	Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech. Hearing Research, 2010, 270, 127-133.	0.9	28
33	Cochlear mechanisms of frequency and intensity coding. II. Dynamic range and the code for loudness. Hearing Research, 1998, 124, 170-181.	0.9	26
34	T'ain't the way you say it, it's what you say – Perceptual continuity of voice and top–down restoration of speech. Hearing Research, 2014, 315, 80-87.	0.9	23
35	Band importance functions of listeners with cochlear implants using clinical maps. Journal of the Acoustical Society of America, 2016, 140, 3718-3727.	0.5	22
36	Similar abilities of musicians and non-musicians to segregate voices by fundamental frequency. Journal of the Acoustical Society of America, 2017, 142, 1739-1755.	0.5	22

MONITA CHATTERJEE

#	Article	IF	CITATIONS
37	Speech recognition against harmonic and inharmonic complexes: Spectral dips and periodicity. Journal of the Acoustical Society of America, 2014, 135, 2873-2884.	0.5	21
38	Children's Recognition of Emotional Prosody in Spectrally Degraded Speech Is Predicted by Their Age and Cognitive Status. Ear and Hearing, 2018, 39, 874-880.	1.0	21
39	Sensitivity of school-aged children to pitch-related cues. Journal of the Acoustical Society of America, 2012, 131, 2938-2947.	0.5	20
40	Roles of the target and masker fundamental frequencies in voice segregation. Journal of the Acoustical Society of America, 2014, 136, 1225-1236.	0.5	20
41	Deficits in the Sensitivity to Pitch Sweeps by School-Aged Children Wearing Cochlear Implants. Frontiers in Neuroscience, 2016, 10, 73.	1.4	20
42	Across- and Within-Channel Envelope Interactions in Cochlear Implant Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2004, 5, 360-375.	0.9	18
43	A relation between electrode discrimination and amplitude modulation detection by cochlear implant listeners. Journal of the Acoustical Society of America, 2010, 127, 415-426.	0.5	17
44	Processing of Acoustic Information in Lexical Tone Production and Perception by Pediatric Cochlear Implant Recipients. Frontiers in Neuroscience, 2019, 13, 639.	1.4	16
45	Voice Emotion Recognition by Children With Mild-to-Moderate Hearing Loss. Ear and Hearing, 2019, 40, 477-492.	1.0	16
46	Acoustics of Emotional Prosody Produced by Prelingually Deaf Children With Cochlear Implants. Frontiers in Psychology, 2019, 10, 2190.	1.1	15
47	Sensitivity to pulse phase duration in cochlear implant listeners: Effects of stimulation mode. Journal of the Acoustical Society of America, 2014, 136, 829-840.	0.5	13
48	Fundamental-frequency discrimination using noise-band-vocoded harmonic complexes in older listeners with normal hearing. Journal of the Acoustical Society of America, 2015, 138, 1687-1695.	0.5	13
49	Perceived listening effort for a tonal task with contralateral competing signals. Journal of the Acoustical Society of America, 2013, 134, EL352-EL358.	0.5	10
50	Infants' name recognition in on- and off-channel noise. Journal of the Acoustical Society of America, 2013, 133, EL377-EL383.	0.5	10
51	Toddlers' comprehension of degraded signals: Noise-vocoded versus sine-wave analogs. Journal of the Acoustical Society of America, 2015, 138, EL311-EL317.	0.5	10
52	Sequential stream segregation in normally-hearing and cochlear-implant listeners. Journal of the Acoustical Society of America, 2017, 141, 50-64.	0.5	10
53	Perception of Child-Directed Versus Adult-Directed Emotional Speech in Pediatric Cochlear Implant Users. Ear and Hearing, 2020, 41, 1372-1382.	1.0	10
54	Modulation detection interference in cochlear implant listeners under forward masking conditions. Journal of the Acoustical Society of America, 2018, 143, 1117-1127.	0.5	8

MONITA CHATTERJEE

#	Article	IF	CITATIONS
55	Voice emotion recognition by Mandarinâ€speaking pediatric cochlear implant users in Taiwan. Laryngoscope Investigative Otolaryngology, 2022, 7, 250-258.	0.6	7
56	Phase effects in masking by harmonic complexes: Speech recognition. Hearing Research, 2013, 306, 54-62.	0.9	6
57	How Noise and Language Proficiency Influence Speech Recognition by Individual Non-Native Listeners. PLoS ONE, 2014, 9, e113386.	1.1	6
58	Weighting of Prosodic and Lexical-Semantic Cues for Emotion Identification in Spectrally Degraded Speech and With Cochlear Implants. Ear and Hearing, 2021, 42, 1727-1740.	1.0	6
59	How Vocal Emotions Produced by Children With Cochlear Implants Are Perceived by Their Hearing Peers. Journal of Speech, Language, and Hearing Research, 2019, 62, 3728-3740.	0.7	6
60	Physiological overshoot and the compound action potential. Hearing Research, 1993, 69, 45-54.	0.9	4
61	Phase effects in masking by harmonic complexes: Detection of bands of speech-shaped noise. Journal of the Acoustical Society of America, 2014, 136, 2726-2736.	0.5	3
62	Recovery from forward masking in cochlear implant listeners depends on stimulation mode, level, and electrode location. Journal of the Acoustical Society of America, 2017, 141, 3190-3202.	0.5	3
63	Toddlers' fast-mapping from noise-vocoded speech. Journal of the Acoustical Society of America, 2020, 147, 2432-2441.	0.5	3
64	Age-Related Changes in Voice Emotion Recognition by Postlingually Deafened Listeners With Cochlear Implants. Ear and Hearing, 2022, 43, 323-334.	1.0	3
65	Envelope Interactions in Multi-Channel Amplitude Modulation Frequency Discrimination by Cochlear Implant Users. PLoS ONE, 2015, 10, e0139546.	1.1	1
66	Toddlers' comprehension of noise-vocoded speech and sine-wave analogs to speech. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0