
Zonglong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6360561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chemical Reviews, 2018, 118, 3447-3507.	23.0	1,371
2	A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 7584-7588.	7.2	694
3	Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots. Journal of the American Chemical Society, 2014, 136, 3760-3763.	6.6	688
4	Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376, 416-420.	6.0	527
5	Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO ₂ Nanocrystals as the Robust Electronâ€Transporting Layer. Advanced Materials, 2016, 28, 6478-6484.	11.1	447
6	Nitrogenâ€Doped Co ₃ O ₄ Mesoporous Nanowire Arrays as an Additiveâ€Free Airâ€Cathode for Flexible Solidâ€State Zinc–Air Batteries. Advanced Materials, 2017, 29, 1602868.	11.1	428
7	Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. Journal of the American Chemical Society, 2020, 142, 20134-20142.	6.6	414
8	Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nature Communications, 2020, 11, 177.	5.8	360
9	Highâ€Performance Holeâ€Extraction Layer of Sol–Gelâ€Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 12571-12575.	7.2	355
10	Interface Engineering for Allâ€Inorganic CsPbl ₂ Br Perovskite Solar Cells with Efficiency over 14%. Advanced Materials, 2018, 30, e1802509.	11.1	336
11	Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy and Environmental Science, 2017, 10, 772-779.	15.6	315
12	Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance. Advanced Functional Materials, 2016, 26, 2950-2958.	7.8	305
13	Mixed Cation FA <i>_x</i> PEA _{1–} <i>_x</i> PbI ₃ with Enhanced Phase and Ambient Stability toward Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601307.	10.2	298
14	High performance flexible solid-state asymmetric supercapacitors from MnO ₂ /ZnO core–shell nanorods//specially reduced graphene oxide. Journal of Materials Chemistry C, 2014, 2, 1331-1336.	2.7	266
15	Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells. Joule, 2020, 4, 1248-1262.	11.7	260
16	2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nature Nanotechnology, 2020, 15, 934-940.	15.6	258
17	A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2020, 142, 15246-15251.	6.6	257
18	High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor, Journal of the American Chemical Society, 2021, 143, 2665-2670.	6.6	245

#	Article	IF	CITATIONS
19	Highâ€Performance Grapheneâ€Based Hole Conductorâ€Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small, 2015, 11, 2269-2274.	5.2	233
20	Realizing Efficient Leadâ€Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Advanced Materials, 2018, 30, 1703800.	11.1	198
21	Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction. Chemical Communications, 2015, 51, 1120-1123.	2.2	195
22	Dopantâ€Free Organic Holeâ€Transporting Material for Efficient and Stable Inverted Allâ€Inorganic and Hybrid Perovskite Solar Cells. Advanced Materials, 2020, 32, e1908011.	11.1	195
23	High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. Journal of Materials Chemistry A, 2015, 3, 9098-9102.	5.2	192
24	Inorganic CsPb _{1â^'} <i>_x</i> Sn <i>_x</i> IBr ₂ for Efficient Wideâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800525.	10.2	192
25	Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 2016, 22, 328-337.	8.2	180
26	Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 11833-11839.	6.6	178
27	Highly Efficient Porphyrinâ€Based OPV/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor. Advanced Materials, 2017, 29, 1703980.	11.1	176
28	Polyfluorene Derivatives are Highâ€Performance Organic Holeâ€Transporting Materials for Inorganicâ^'Organic Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2014, 24, 7357-7365.	7.8	172
29	Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO ₃ : a combined experimental and theoretical study. Nanoscale, 2015, 7, 2933-2940.	2.8	171
30	Cobalt-Embedded Nitrogen Doped Carbon Nanotubes: A Bifunctional Catalyst for Oxygen Electrode Reactions in a Wide pH Range. ACS Applied Materials & Interfaces, 2015, 7, 4048-4055.	4.0	156
31	Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 4634-4658.	5.2	154
32	An Azaacene Derivative as Promising Electronâ€īransport Layer for Inverted Perovskite Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2135-2138.	1.7	144
33	Over 17% Efficiency Binary Organic Solar Cells with Photoresponses Reaching 1000 nm Enabled by Selenophene-Fused Nonfullerene Acceptors. ACS Energy Letters, 2021, 6, 9-15.	8.8	141
34	Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nature Communications, 2021, 12, 468.	5.8	137
35	A Vinylene‣inkerâ€Based Polymer Acceptor Featuring a Coplanar and Rigid Molecular Conformation Enables Highâ€Performance Allâ€Polymer Solar Cells with Over 17% Efficiency. Advanced Materials, 2022, 34, e2200361.	11.1	131
36	Multi‣elenophene ontaining Narrow Bandgap Polymer Acceptors for Allâ€Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angewandte Chemie - International Edition, 2021, 60, 15935-15943.	7.2	125

#	Article	IF	CITATIONS
37	Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copperâ€Based Catalysts toward Multicarbon Products. Advanced Functional Materials, 2021, 31, 2102151.	7.8	123
38	Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chemical Communications, 2019, 55, 4315-4318.	2.2	121
39	Hexaazatrinaphthylene Derivatives: Efficient Electronâ€Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 8999-9003.	7.2	118
40	Dopantâ€Free Squaraineâ€Based Polymeric Holeâ€Transporting Materials with Comprehensive Passivation Effects for Efficient Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 17724-17730.	7.2	118
41	A 0D/3D Heterostructured Allâ€Inorganic Halide Perovskite Solar Cell with High Performance and Enhanced Phase Stability. Advanced Materials, 2019, 31, e1904735.	11.1	117
42	4â€ <i>Tert</i> â€butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700683.	10.2	115
43	Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss. Advanced Energy Materials, 2021, 11, 2003177.	10.2	114
44	Fluoranthene-based dopant-free hole transporting materials for efficient perovskite solar cells. Chemical Science, 2018, 9, 2698-2704.	3.7	109
45	A Lowâ€Temperature, Solution Processable Tin Oxide Electronâ€Transporting Layer Prepared by the Dualâ€Fuel Combustion Method for Efficient Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600122.	1.9	107
46	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233.	7.2	107
47	A Quasi-Quantum Well Sensitized Solar Cell with Accelerated Charge Separation and Collection. Journal of the American Chemical Society, 2013, 135, 9531-9539.	6.6	105
48	Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule, 2018, 2, 168-183.	11.7	105
49	Boosting Photovoltaic Performance for Lead Halide Perovskites Solar Cells with BF ₄ ^{â^'} Anion Substitutions. Advanced Functional Materials, 2019, 29, 1808833.	7.8	104
50	A Lowâ€Temperature, Solutionâ€Processable Organic Electronâ€Transporting Layer Based on Planar Coronene for Highâ€performance Conventional Perovskite Solar Cells. Advanced Materials, 2016, 28, 10786-10793.	11.1	102
51	Allâ€Inorganic CsPbl ₃ Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. Advanced Functional Materials, 2021, 31, 2005930.	7.8	101
52	Vertical Orientated Dion–Jacobson Quasiâ€⊋D Perovskite Film with Improved Photovoltaic Performance and Stability. Small Methods, 2020, 4, 1900831.	4.6	96
53	Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH ₃ NH ₃ Pb _{<i>x</i>} Sn _{1–<i>x</i>} Br ₃ Single Crystals. Chemistry of Materials, 2018, 30, 1556-1565.	3.2	93
54	A Nonfullerene Semitransparent Tandem Organic Solar Cell with 10.5% Power Conversion Efficiency. Advanced Energy Materials, 2018, 8, 1800529.	10.2	92

#	Article	IF	CITATIONS
55	Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews, 2021, 50, 13090-13128.	18.7	91
56	A Dopantâ€Free Polymeric Holeâ€Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902600.	10.2	89
57	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	11.1	89
58	Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 11448-11459.	5.2	88
59	Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer. Advanced Science, 2016, 3, 1600027.	5.6	86
60	A Generally Applicable Approach Using Sequential Deposition to Enable Highly Efficient Organic Solar Cells. Small Methods, 2020, 4, 2000687.	4.6	86
61	A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	85
62	Selenium-Containing Organic Photovoltaic Materials. Accounts of Chemical Research, 2021, 54, 3906-3916.	7.6	83
63	Mesoporous SnO ₂ single crystals as an effective electron collector for perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 18265-18268.	1.3	82
64	Highly crystalline Zn ₂ SnO ₄ nanoparticles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 15294-15301.	5.2	82
65	Strongly Coupled NiCo ₂ O ₄ Nanocrystal/MXene Hybrid through In Situ Ni/Co–F Bonds for Efficient Wearable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 44639-44647.	4.0	82
66	Confined Growth of Silver–Copper Janus Nanostructures with {100} Facets for Highly Selective Tandem Electrocatalytic Carbon Dioxide Reduction. Advanced Materials, 2022, 34, e2110607.	11.1	82
67	Hybrid Perovskiteâ€Organic Flexible Tandem Solar Cell Enabling Highly Efficient Electrocatalysis Overall Water Splitting. Advanced Energy Materials, 2020, 10, 2000361.	10.2	79
68	Co(II) _{1–<i>x</i>} Co(0) _{<i>x</i>/3} Mn(III) _{2<i>x</i>/3} S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries. ACS Applied Materials & Interfaces, 2016, 8, 13348-13359.	4.0	77
69	Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 164, 47-55.	3.0	75
70	Spiroâ€Phenylpyrazoleâ€9,9′â€Thioxanthene Analogues as Holeâ€Transporting Materials for Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700823.	10.2	74
71	Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells. Nano Energy, 2016, 30, 417-425.	8.2	71
72	Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO ₄ Photoanodes between the BiVO ₄ and the FTO Side Illumination. Journal of Physical Chemistry C, 2015, 119, 23350-23357.	1.5	70

#	Article	IF	CITATIONS
73	Excess Cesium Iodide Induces Spinodal Decomposition of CsPbI ₂ Br Perovskite Films. Journal of Physical Chemistry Letters, 2019, 10, 194-199.	2.1	69
74	Composition Engineering of Allâ€Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 2020, 30, 2001764.	7.8	69
75	Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics. Nano Energy, 2020, 78, 105377.	8.2	68
76	Dopant-free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells. Nano Energy, 2021, 82, 105701.	8.2	68
77	A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables Enhanced Perovskite Solar Cell Performance. Advanced Science, 2016, 3, 1500353.	5.6	67
78	Improved Efficiency and Stability of Pb/Sn Binary Perovskite Solar Cells Fabricated by Galvanic Displacement Reaction. Advanced Energy Materials, 2019, 9, 1802774.	10.2	67
79	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 20437-20442.	7.2	66
80	Enhanced Moisture Stability of Cesiumâ€Containing Compositional Perovskites by a Feasible Interfacial Engineering. Advanced Materials Interfaces, 2017, 4, 1700598.	1.9	65
81	Building High-Efficiency CdS/CdSe-Sensitized Solar Cells with a Hierarchically Branched Double-Layer Architecture. ACS Applied Materials & Interfaces, 2013, 5, 4000-4005.	4.0	64
82	Facile Thiolâ€Ene Thermal Crosslinking Reaction Facilitated Holeâ€Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601165.	10.2	62
83	Modifying Surface Termination of CsPbl ₃ Grain Boundaries by 2D Perovskite Layer for Efficient and Stable Photovoltaics. Advanced Functional Materials, 2021, 31, 2009515.	7.8	62
84	Epitaxial Growth of ZnO Nanodisks with Large Exposed Polar Facets on Nanowire Arrays for Promoting Photoelectrochemical Water Splitting. Small, 2014, 10, 4760-4769.	5.2	61
85	Enabling High Efficiency of Hydrocarbonâ€Solvent Processed Organic Solar Cells through Balanced Charge Generation and Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 2101768.	10.2	61
86	Technical Challenges and Perspectives for the Commercialization of Solutionâ€Processable Solar Cells. Advanced Materials Technologies, 2021, 6, .	3.0	60
87	Solar-powered overall water splitting system combing metal-organic frameworks derived bimetallic nanohybrids based electrocatalysts and one organic solar cell. Nano Energy, 2019, 56, 82-91.	8.2	55
88	Dopantâ€Free Crossconjugated Holeâ€Transporting Polymers for Highly Efficient Perovskite Solar Cells. Advanced Science, 2020, 7, 1903331.	5.6	55
89	Interface functionalization in inverted perovskite solar cells: From material perspective. , 2022, 1, e9120011.		53
90	Boosting the Performance of Environmentally Friendly Quantum Dotâ€6ensitized Solar Cells over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure. Advanced Materials, 2019, 31, e1903696.	11.1	51

#	Article	IF	CITATIONS
91	Dopantâ€Free Holeâ€Transporting Material with Enhanced Intermolecular Interaction for Efficient and Stable nâ€iâ€p Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100967.	10.2	51
92	Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. Journal of Materials Chemistry A, 2021, 9, 19778-19787.	5.2	50
93	An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy, 2022, 93, 106853.	8.2	49
94	Efficient and Stable Tin Perovskite Solar Cells by Pyridineâ€Functionalized Fullerene with Reduced Interfacial Energy Loss. Advanced Functional Materials, 2022, 32, .	7.8	49
95	Mapping Nonfullerene Acceptors with a Novel Wide Bandgap Polymer for High Performance Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1801214.	10.2	47
96	Highly Efficient and Rapid Inactivation of Coronavirus on Nonâ€Metal Hydrophobic Laserâ€Induced Graphene in Mild Conditions. Advanced Functional Materials, 2021, 31, 2101195.	7.8	47
97	Theoretical calculation guided electrocatalysts design: Nitrogen saturated porous Mo2C nanostructures for hydrogen production. Applied Catalysis B: Environmental, 2019, 257, 117891.	10.8	46
98	Asymmetric Isomer Effects in Benzo[<i>c</i>][1,2,5]thiadiazoleâ€Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significant Photovoltaic Performance Enhancement. Advanced Functional Materials, 2021, 31, 2104369.	7.8	46
99	Sulfonated Graphene Aerogels Enable Safeâ€toâ€Use Flexible Perovskite Solar Modules. Advanced Energy Materials, 2022, 12, .	10.2	46
100	Efficient and stable Cs2AgBiBr6 double perovskite solar cells through in-situ surface modulation. Chemical Engineering Journal, 2022, 446, 137144.	6.6	45
101	Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. Journal of Materials Chemistry A, 2018, 6, 12999-13004.	5.2	43
102	Interfacial Engineering of Wideâ€Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells. Advanced Functional Materials, 2022, 32, 2107359.	7.8	43
103	Close-Packed Colloidal SiO2as a Nanoreactor: Generalized Synthesis of Metal Oxide Mesoporous Single Crystals and Mesocrystals. Chemistry of Materials, 2014, 26, 5700-5709.	3.2	40
104	Hierarchical Dual‧caffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600484.	1.9	40
105	Improving Photovoltaic Performance Using Perovskite/Surfaceâ€Modified Graphitic Carbon Nitride Heterojunction. Solar Rrl, 2020, 4, 1900413.	3.1	38
106	Interfacial Modification through a Multifunctional Molecule for Inorganic Perovskite Solar Cells with over 18% Efficiency. Solar Rrl, 2020, 4, 2000205.	3.1	38
107	Trihydrazine Dihydriodideâ€Assisted Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900285.	3.1	34
108	Coordination and interface engineering to boost catalytic property of two-dimensional ZIFs for wearable Zn-air batteries. Journal of Energy Chemistry, 2022, 68, 78-86.	7.1	33

#	Article	IF	CITATIONS
109	The nanoscale carbon p–n junction between carbon nanotubes and N,B-codoped holey graphene enhances the catalytic activity towards selective oxidation. Chemical Communications, 2014, 50, 7517-7520.	2.2	29
110	Improved Ambientâ€6table Perovskite Solar Cells Enabled by a Hybrid Polymeric Electronâ€Transporting Layer. ChemSusChem, 2016, 9, 2586-2591.	3.6	26
111	Surface engineered CoP/Co ₃ O ₄ heterojunction for high-performance bi-functional water splitting electro-catalysis. Nanoscale, 2021, 13, 20281-20288.	2.8	26
112	Enhanced Nearâ€Infrared Photoresponse of Inverted Perovskite Solar Cells Through Rational Design of Bulkâ€Heterojunction Electronâ€Transporting Layers. Advanced Science, 2019, 6, 1901714.	5.6	23
113	Lowâ€Temperature Processed Carbon Electrodeâ€Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability. Energy and Environmental Materials, 2021, 4, 95-102.	7.3	23
114	Freestanding 2D NiFe Metal–Organic Framework Nanosheets: Facilitating Proton Transfer via Organic Ligands for Efficient Oxygen Evolution Reaction. Small, 2022, 18, .	5.2	23
115	Magnetic-field-assisted aerosol pyrolysis synthesis of iron pyrite sponge-like nanochain networks as cost-efficient counter electrodes in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5508-5515.	5.2	22
116	In situ growth of a TiO ₂ layer on a flexible Ti substrate targeting the interface recombination issue of BiVO ₄ photoanodes for efficient solar water splitting. Journal of Materials Chemistry A, 2017, 5, 20195-20201.	5.2	22
117	Engineering Ternary Copper-Cobalt Sulfide Nanosheets as High-performance Electrocatalysts toward Oxygen Evolution Reaction. Catalysts, 2019, 9, 459.	1.6	21
118	Highly efficient and stable perovskite solar cells enabled by a fluoro-functionalized TiO2 inorganic interlayer. Matter, 2021, 4, 3301-3312.	5.0	21
119	Hexaazatrinaphthylene Derivatives: Efficient Electronâ€Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie, 2016, 128, 9145-9149.	1.6	19
120	Impermeable inorganic "walls―sandwiching perovskite layer toward inverted and indoor photovoltaic devices. Nano Energy, 2021, 88, 106286.	8.2	19
121	Dopantâ€Free Squaraineâ€Based Polymeric Holeâ€Transporting Materials with Comprehensive Passivation Effects for Efficient Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 17888-17894.	1.6	18
122	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie, 2021, 133, 7303-7309.	1.6	18
123	Interface Engineering for Allâ€Inorganic CsPbIBr ₂ Perovskite Solar Cells with Enhanced Power Conversion Efficiency over 11%. Energy Technology, 2021, 9, 2100562.	1.8	18
124	Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	18
125	p-Type NiO modified BiVO4 photoanodes with enhanced charge separation and solar water oxidation kinetics. Materials Letters, 2019, 249, 128-131.	1.3	17
126	Gold-based nanoalloys: synthetic methods and catalytic applications. Journal of Materials Chemistry A, 2021, 9, 19025-19053.	5.2	16

#	Article	IF	CITATIONS
127	3D Porous Nb ₂ C MXene/reduced graphene oxide aerogel coupled with NiFe alloy nanoparticles for wearable Zn–air batteries. Materials Chemistry Frontiers, 2021, 5, 7315-7322.	3.2	14
128	A simple paper-based colorimetric analytical device for rapid detection of Enterococcus faecalis under the stress of chlorophenols. Talanta, 2021, 225, 121966.	2.9	13
129	Exploring Overall Photoelectric Applications by Organic Materials Containing Symmetric Donor Isomers. Chemistry of Materials, 2019, 31, 8810-8819.	3.2	12
130	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 20600-20605.	1.6	11
131	Fabrication and Enhanced Rectifying Performance of Zn1â^' <i>x</i> Co <i>x</i> O Nanowall Vertically Growing on Si Wafer. Chemistry Letters, 2010, 39, 994-995.	0.7	10
132	Atomic layer deposited Al ₂ O ₃ layer confinement: an efficient strategy to synthesize durable MOF-derived catalysts toward the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2021, 8, 1432-1438.	3.0	10
133	Efficient wafer-scale poling of electro-optic polymer thin films on soda-lime glass substrates: large second-order nonlinear coefficients and exceptional homogeneity of optical birefringence. Optical Materials Express, 2017, 7, 1909.	1.6	7
134	Multi‧elenophene ontaining Narrow Bandgap Polymer Acceptors for Allâ€Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angewandte Chemie, 2021, 133, 16071-16079.	1.6	6
135	Synthesis of star-shaped non-fullerene acceptors and their applications in organic solar cells. Synthetic Metals, 2018, 245, 167-174.	2.1	3
136	In Situ Formation of Ag ₂ MoO ₄ in a Ag/MoO ₃ Buffer Layer Enables Highly Efficient Inverted Perovskite Cell for a Tandem Structure. ACS Applied Energy Materials, 2020, 3, 9742-9749.	2.5	2
137	Interface and Nanostructural Engineering of Low-cost, Efficient and Stable Perovskite Solar Cells. Materials Research Society Symposia Proceedings, 2015, 1771, 171-179.	0.1	1
138	Laserâ€Induced Graphene: Highly Efficient and Rapid Inactivation of Coronavirus on Nonâ€Metal Hydrophobic Laserâ€Induced Graphene in Mild Conditions (Adv. Funct. Mater. 24/2021). Advanced Functional Materials, 2021, 31, 2170175.	7.8	0
139	Highly Efficient Lead-free or Pb/Sn based Perovskite Solar Cell through Compositional Engineering. , 0, , .		0