List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/636056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymeric composites and nanocomposites containing lignin. , 2022, , 293-324.		2
2	Lemna minor aqueous extract as a natural ingredient incorporated in poly (vinyl alcohol)-based films for active food packaging systems. Food Packaging and Shelf Life, 2022, 32, 100822.	3.3	6
3	Synthesis of a Lignin/Zinc Oxide Hybrid Nanoparticles System and Its Application by Nano-Priming in Maize. Nanomaterials, 2022, 12, 568.	1.9	14
4	Shape-Memory Materials via Electrospinning: A Review. Polymers, 2022, 14, 995.	2.0	17
5	Wound Dressing: Combination of Acacia Gum/PVP/Cyclic Dextrin in Bioadhesive Patches Loaded with Grape Seed Extract. Pharmaceutics, 2022, 14, 485.	2.0	12
6	Preparation of toughened poly(lactic acid)-poly(Îμ-caprolactone)-lignin nanocomposites with good heat- and UV-resistance. Industrial Crops and Products, 2022, 183, 114965.	2.5	16
7	Organic waste valorisation towards circular and sustainable biocomposites. Green Chemistry, 2022, 24, 5429-5459.	4.6	26
8	The Initial Stage of Thermoplastic Polyimide Crystallization: Computer Simulations and Experiments. Reviews and Advances in Chemistry, 2021, 11, 85-99.	0.2	1
9	Migration and Degradation in Composting Environment of Active Polylactic Acid Bilayer Nanocomposites Films: Combined Role of Umbelliferone, Lignin and Cellulose Nanostructures. Polymers, 2021, 13, 282.	2.0	7
10	Nanocomposites based on ethylene vinyl acetate reinforced with different types of nanoparticles: potential applications. , 2021, , 357-377.		0
11	Lignin-based materials with antioxidant and antimicrobial properties. , 2021, , 291-326.		3
12	Lignin Nanoparticles: A Promising Tool to Improve Maize Physiological, Biochemical, and Chemical Traits. Nanomaterials, 2021, 11, 846.	1.9	32
13	Development and Characterization of Xanthan Gum and Alginate Based Bioadhesive Film for Pycnogenol Topical Use in Wound Treatment. Pharmaceutics, 2021, 13, 324.	2.0	25
14	Graphene nanoplatelet, multiwall carbon nanotube, and hybrid multiwall carbon nanotube–graphene nanoplatelet epoxy nanocomposites as strain sensing coatings. Journal of Reinforced Plastics and Composites, 2021, 40, 632-643.	1.6	28
15	The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. Sustainability, 2021, 13, 2710.	1.6	64
16	Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films. Molecules, 2021, 26, 2104.	1.7	20
17	Fabrication of water-resistant epoxy nanocomposite with improved dynamic mechanical properties and balanced thermal and dimensional stability: Study on dual role of graphene oxide nanosheets and barium oxide microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617–126405	2.3	7
18	Anthocyanin Hybrid Nanopigments from Pomegranate Waste: Colour, Thermomechanical Stability and Environmental Impact of Polyester-Based Bionanocomposites. Polymers, 2021, 13, 1966.	2.0	12

#	Article	IF	CITATIONS
19	Enhancing the Radical Scavenging Activity and UV Resistance of Lignin Nanoparticles via Surface Mannich Amination toward a Biobased Antioxidant. Biomacromolecules, 2021, 22, 2693-2701.	2.6	60
20	PLA Electrospun Fibers Reinforced with Organic and Inorganic Nanoparticles: A Comparative Study. Molecules, 2021, 26, 4925.	1.7	17
21	Evaluation of the Factors Affecting the Disintegration under a Composting Process of Poly(lactic) Tj ETQq1 1 (0.784314 rgB 2.0	T /Overlock
22	Highly-toughened PVA/nanocellulose hydrogels with anti-oxidative and antibacterial properties triggered by lignin-Ag nanoparticles. Materials Science and Engineering C, 2021, 129, 112385.	3.8	33
23	Multifunctional lignin-based nanocomposites and nanohybrids. Green Chemistry, 2021, 23, 6698-6760.	4.6	93
24	UV Protective, Antioxidant, Antibacterial and Compostable Polylactic Acid Composites Containing Pristine and Chemically Modified Lignin Nanoparticles. Molecules, 2021, 26, 126.	1.7	51
25	Design of Intrinsically Flame-Retardant Vanillin-Based Epoxy Resin for Thermal-Conductive Epoxy/Graphene Aerogel Composites. ACS Applied Materials & Interfaces, 2021, 13, 59341-59351.	4.0	35
26	Effect of Pretreatment of Nanocomposite PESâ€Fe 3 O 4 Separator on Microbial Fuel Cells Performance. Polymer Engineering and Science, 2020, 60, 371-379.	1.5	7
27	Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. International Journal of Biological Macromolecules, 2020, 144, 102-110.	3.6	119
28	Biocomposites Based on Plasticized Wheat Flours: Effect of Bran Content on Thermomechanical Behavior. Polymers, 2020, 12, 2248.	2.0	7
29	Synergic Effect of Nanolignin and Metal Oxide Nanoparticles into Poly(<scp>l</scp> -lactide) Bionanocomposites: Material Properties, Antioxidant Activity, and Antibacterial Performance. ACS Applied Bio Materials, 2020, 3, 5263-5274.	2.3	52
30	Novel Nanocomposite PLA Films with Lignin/Zinc Oxide Hybrids: Design, Characterization, Interaction with Mesenchymal Stem Cells. Nanomaterials, 2020, 10, 2176.	1.9	24
31	Hydrophobic, UV resistant and dielectric polyurethane-nanolignin composites with good reprocessability. Materials and Design, 2020, 196, 109150.	3.3	33
32	Polymeric Bioadhesive Patch Based on Ketoprofen-Hydrotalcite Hybrid for Local Treatments. Pharmaceutics, 2020, 12, 733.	2.0	9
33	Drying and redispersion of plant cellulose nanofibers for industrial applications: a review. Cellulose, 2020, 27, 10649-10670.	2.4	47
34	Electrospinning of PCL-Based Blends: Processing Optimization for Their Scalable Production. Materials, 2020, 13, 3853.	1.3	35
35	Antioxidant Packaging Films Based on Ethylene Vinyl Alcohol Copolymer (EVOH) and Caffeic Acid. Molecules, 2020, 25, 3953.	1.7	26
36	Conclusive editorial on non-destructive techniques for cultural heritage. Rendiconti Lincei, 2020, 31, 819-820.	1.0	3

#	Article	IF	CITATIONS
37	Controlled Release, Disintegration, Antioxidant, and Antimicrobial Properties of Poly (Lactic) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 T
38	Effect of Chlorophyll Hybrid Nanopigments from Broccoli Waste on Thermomechanical and Colour Behaviour of Polyester-Based Bionanocomposites. Polymers, 2020, 12, 2508.	2.0	9
39	Controlled Release of Thymol from Poly(Lactic Acid)-Based Silver Nanocomposite Films with Antibacterial and Antioxidant Activity. Antioxidants, 2020, 9, 395.	2.2	38
40	Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 2020, 179, 109226.	2.7	58
41	Effect of SWCNT Content and Water Vapor Adsorption on the Electrical Properties of Cellulose Nanocrystal-Based Nanohybrids. Journal of Physical Chemistry C, 2020, 124, 14901-14910.	1.5	6
42	Thermomechanical, antioxidant and moisture behaviour of PVA films in presence of citric acid esterified cellulose nanocrystals. International Journal of Biological Macromolecules, 2020, 161, 617-626.	3.6	39
43	Organic and Inorganic PCL-Based Electrospun Fibers. Polymers, 2020, 12, 1325.	2.0	27
44	Effect of Cellulose Nanocrystals and Lignin Nanoparticles on Mechanical, Antioxidant and Water Vapour Barrier Properties of Glutaraldehyde Crosslinked PVA Films. Polymers, 2020, 12, 1364.	2.0	82
45	Cellulose nanocrystal based multifunctional nanohybrids. Progress in Materials Science, 2020, 112, 100668.	16.0	113
46	Effect of Lemon Waste Natural Dye and Essential Oil Loaded into Laminar Nanoclays on Thermomechanical and Color Properties of Polyester Based Bionanocomposites. Polymers, 2020, 12, 1451.	2.0	11
47	Characterization of Licorice Root Waste for Prospective Use as Filler in more Eco-Friendly Composite Materials. Processes, 2020, 8, 733.	1.3	12
48	PBS-Based Green Copolymer as an Efficient Compatibilizer in Thermoplastic Inedible Wheat Flour/Poly(butylene succinate) Blends. Biomacromolecules, 2020, 21, 3254-3269.	2.6	25
49	Improved Toughness in Lignin/Natural Fiber Composites Plasticized with Epoxidized and Maleinized Linseed Oils. Materials, 2020, 13, 600.	1.3	12
50	Thermomechanical and Morphological Properties of Poly(ethylene terephthalate)/Anhydrous Calcium Terephthalate Nanocomposites. Polymers, 2020, 12, 276.	2.0	15
51	Effect of Almond Shell Waste on Physicochemical Properties of Polyester-Based Biocomposites. Polymers, 2020, 12, 835.	2.0	18
52	Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 2019, 223, 115131.	5.1	35
53	Acoustic impact of a wave energy converter in Mediterranean shallow waters. Scientific Reports, 2019, 9, 9586.	1.6	12
54	Biomimetic multifunctional materials: a review. Emergent Materials, 2019, 2, 391-415.	3.2	27

JOSé MARÃA KENNY

#	Article	IF	CITATIONS
55	Toward Predictive Molecular Dynamics Simulations of Asphaltenes in Toluene and Heptane. ACS Omega, 2019, 4, 20005-20014.	1.6	22
56	Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin. Molecules, 2019, 24, 3113.	1.7	34
57	Extraction of nanostructured starch from purified granules of waxy and non-waxy barley cultivars. Industrial Crops and Products, 2019, 130, 520-527.	2.5	11
58	Thermal, antioxidant and swelling behaviour of transparent polyvinyl (alcohol) films in presence of hydrophobic citric acid-modified lignin nanoparticles. International Journal of Biological Macromolecules, 2019, 127, 665-676.	3.6	100
59	Lignocellulosic materials as reinforcements in sustainable packaging systems. , 2019, , 87-102.		14
60	Active Role of ZnO Nanorods in Thermomechanical and Barrier Performance of Poly(vinyl) Tj ETQq0 0 0 rgBT $/$	Overlack 10 2.0	Tf 50 542 Td
61	Thermal and mechanical behavior of thermoplastic composites reinforced with fibers enzymatically extracted from Ampelodesmos mauritanicus. Polymer Engineering and Science, 2019, 59, 2418-2428.	1.5	8
62	Design and Characterization of PLA Bilayer Films Containing Lignin and Cellulose Nanostructures in Combination With Umbelliferone as Active Ingredient. Frontiers in Chemistry, 2019, 7, 157.	1.8	38
63	Protocol for nonisothermal cure analysis of thermoset composites. Progress in Organic Coatings, 2019, 131, 333-339.	1.9	87
64	Bio- and Fossil-Based Polymeric Blends and Nanocomposites for Packaging: Structure–Property Relationship. Materials, 2019, 12, 471.	1.3	113
65	Multifunctional and Environmentally Friendly TiO2–SiO2 Mesoporous Materials for Sustainable Green Buildings. Molecules, 2019, 24, 4226.	1.7	12
66	A Novel Class of Cost Effective and High Performance Composites Based on Terephthalate Salts Reinforced Polyether Ether Ketone. Polymers, 2019, 11, 2097.	2.0	6
67	Gallic Acid and Quercetin as Intelligent and Active Ingredients in Poly(vinyl alcohol) Films for Food Packaging. Polymers, 2019, 11, 1999.	2.0	71
68	Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations and reality. Carbohydrate Polymers, 2019, 209, 20-37.	5.1	89
69	Melt-processing of bionanocomposites based on ethylene-co-vinyl acetate and starch nanocrystals. Carbohydrate Polymers, 2019, 208, 382-390.	5.1	20
70	Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss). Carbohydrate Polymers, 2019, 209, 328-337.	5.1	77
71	Preparation and properties of adhesives based on phenolic resin containing lignin micro and nanoparticles: A comparative study. Materials and Design, 2019, 161, 55-63.	3.3	82
72	Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 2019, 159, 184-198.	2.7	48

#	Article	IF	CITATIONS
73	Effect of nanohydroxyapatite, antibiotic, and mucosal defensive agent on the mechanical and thermal properties of glass ionomer cements for special needs patients. Journal of Materials Research, 2018, 33, 638-649.	1.2	21
74	Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 2018, 151, 36-51.	2.7	62
75	Recycling coffee silverskin in sustainable composites based on a poly(butylene) Tj ETQq1 1 0.784314 rgBT /Ov Products, 2018, 118, 311-320.	verlock 10 Tr 2.5	f 50 667 Td (45
76	Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polymer Degradation and Stability, 2018, 152, 126-138.	2.7	81
77	Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure. Composites Part A: Applied Science and Manufacturing, 2018, 107, 61-69.	3.8	83
78	Valorization of Acid Isolated High Yield Lignin Nanoparticles as Innovative Antioxidant/Antimicrobial Organic Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 3502-3514.	3.2	214
79	Effect of nanoâ€magnetite particle content on mechanical, thermal and magnetic properties of polypropylene composites. Polymer Composites, 2018, 39, E1742.	2.3	11
80	Nanostructured starch combined with hydroxytyrosol in poly(vinyl alcohol) based ternary films as active packaging system. Carbohydrate Polymers, 2018, 193, 239-248.	5.1	56
81	Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydrate Polymers, 2018, 181, 275-284.	5.1	228
82	Cure kinetics of epoxy/chicken eggshell biowaste composites: Isothermal calorimetric and chemorheological analyses. Progress in Organic Coatings, 2018, 114, 208-215.	1.9	49
83	Synthesis and Characterization of Nanofluids Useful in Concentrated Solar Power Plants Produced by New Mixing Methodologies for Large-Scale Production. Journal of Heat Transfer, 2018, 140, .	1.2	5
84	Life Cycle Analysis of Extruded Films Based on Poly(lactic acid)/Cellulose Nanocrystal/Limonene: A Comparative Study with ATBC Plasticized PLA/OMMT Systems. Journal of Polymers and the Environment, 2018, 26, 1891-1902.	2.4	13
85	Effect of Different Compatibilizers on Sustainable Composites Based on a PHBV/PBAT Matrix Filled with Coffee Silverskin. Polymers, 2018, 10, 1256.	2.0	36
86	Computer Simulation of Asphaltenes. Petroleum Chemistry, 2018, 58, 983-1004.	0.4	18
87	Structure-property relationships of thermoset nanocomposites. , 2018, , 231-276.		6
88	Thermoset Nanocomposites as ablative materials for rocket and military applications. , 2018, , 477-509.		2
89	Physicochemical properties of nanosized polymeric drug carrier systems. , 2018, , 7-17.		1

90 Stimuli-responsive core-shell nanoparticles. , 2018, , 245-258.

#	Article	IF	CITATIONS
91	Nanocomposites Based on Biodegradable Polymers. Materials, 2018, 11, 795.	1.3	83
92	Citric Acid as Green Modifier for Tuned Hydrophilicity of Surface Modified Cellulose and Lignin Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 9966-9978.	3.2	72
93	Bio-Based Nanocomposites in Food Packaging. , 2018, , 71-110.		19
94	Lignocellulosic Based Bionanocomposites for Different Industrial Applications. Current Organic Chemistry, 2018, 22, 1205-1221.	0.9	8
95	The role of clay modifier on cure characteristics and properties of epoxy/clay/carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) hybrid. Materials Technology, 2017, 32, 171-177.	1.5	19
96	Analysis and simulation of the electrical properties of CNTs/epoxy nanocomposites for high performance composite matrices. Polymer Composites, 2017, 38, 105-115.	2.3	11
97	Effect of boron carbide nanoparticles on the thermal stability of carbon/phenolic composites. Polymer Composites, 2017, 38, 1819-1827.	2.3	25
98	Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres. Composite Structures, 2017, 167, 20-29.	3.1	51
99	Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food and Bioprocess Technology, 2017, 10, 770-780.	2.6	72
100	Biowaste chicken eggshell powder as a potential cure modifier for epoxy/anhydride systems: competitiveness with terpolymer-modified calcium carbonate at low loading levels. RSC Advances, 2017, 7, 2218-2230.	1.7	55
101	Reinforcement effect of cellulose nanocrystals in thermoplastic polyurethane matrices characterized by different soft/hard segment ratio. Polymer Engineering and Science, 2017, 57, 521-530.	1.5	17
102	Processing and characterization of nanocomposite based on poly(butylene/triethylene succinate) copolymers and cellulose nanocrystals. Carbohydrate Polymers, 2017, 165, 51-60.	5.1	30
103	Relationships between wheat flour baking properties and tensile characteristics of derived thermoplastic films. Industrial Crops and Products, 2017, 100, 138-145.	2.5	11
104	To What Extent Can Hyperelastic Models Make Sense the Effect of Clay Surface Treatment on the Mechanical Properties of Elastomeric Nanocomposites?. Macromolecular Materials and Engineering, 2017, 302, 1700036.	1.7	16
105	Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature. Solar Energy Materials and Solar Cells, 2017, 167, 60-69.	3.0	103
106	Cure kinetics of epoxy/MWCNTs nanocomposites: Isothermal calorimetric and rheological analyses. Progress in Organic Coatings, 2017, 108, 75-83.	1.9	60
107	Multiscale modeling of electrical conductivity of carbon nanotubes based polymer nanocomposites. Journal of Applied Physics, 2017, 121, .	1.1	7
108	Effect of polymer chain stiffness on initial stages of crystallization of polyetherimides: Coarseâ€grained computer simulation. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1254-1265.	2.4	7

#	Article	IF	CITATIONS
109	Microstructure and ablation behavior of an affordable and reliable nanostructured Phenolic Impregnated Carbon Ablator (PICA). Polymer Degradation and Stability, 2017, 141, 84-96.	2.7	65
110	Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of â€~micro' and â€~nano' sc Materials Science and Engineering Reports, 2017, 116, 1-29.	ale. 14.8	99
111	Effect of fibre posts, bone losses and fibre content on the biomechanical behaviour of endodontically treated teeth: 3D-finite element analysis. Materials Science and Engineering C, 2017, 74, 334-346.	3.8	38
112	Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films. Carbohydrate Polymers, 2017, 157, 1557-1567.	5.1	39
113	8 Injection moulding of plant fibre composites. , 2017, , 420-439.		3
114	Recent Advances in Conductive Composites Based on Biodegradable Polymers for Regenerative Medicine Applications. , 2017, , 519-542.		0
115	Melt processing and mechanical property characterization of high-performance poly(ether ether) Tj ETQq1 1 0.78	84314 rgB⊺ 1.6	「 /Overlock 1 23
116	Design of a nanocomposite substrate inducing adult stem cell assembly and progression toward an Epiblast-like or Primitive Endoderm-like phenotype via mechanotransduction. Biomaterials, 2017, 144, 211-229.	5.7	23
117	Non-covalently coated biopolymeric nanoparticles for improved tamoxifen delivery. European Polymer Journal, 2017, 95, 348-357.	2.6	21
118	In Focus International Conference on Nanostructured Polymers and Nanocomposites (ECNP). Polymer International, 2017, 66, 1689-1689.	1.6	0
119	Humidityâ€Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromolecular Chemistry and Physics, 2017, 218, 1700388.	1.1	19
120	Simple citric acid-catalyzed surface esterification of cellulose nanocrystals. Carbohydrate Polymers, 2017, 157, 1358-1364.	5.1	91
121	Manufacturing of Natural Fiber/Agrowaste Based Polymer Composites. Green Energy and Technology, 2017, , 125-147.	0.4	5
122	Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(vinyl) Tj ETQq0 0 0 rg	BT_/Overlo 2.0	ck 10 Tf 50 2
123	Nanofillers in Polymers. , 2017, , 47-86.		22
124	Influence of specific intermolecular interactions on the thermal and dielectric properties of bulk polymers: atomistic molecular dynamics simulations of Nylon 6. Soft Matter, 2017, 13, 474-485.	1.2	22

125	Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films. Materials, 2017, 10, 809.	1.3	55	
196	Atomistic Molecular Dynamics Simulations of the Initial Crystallization Stage in an	2.0	10	

¹²⁶ SWCNT-Polyetherimide Nanocomposite. Polymers, 2017, 9, 548.

2.0 19

#	Article	IF	CITATIONS
127	Effect of Cellulose Nanocrystals and Bacterial Cellulose on Disintegrability in Composting Conditions of Plasticized PHB Nanocomposites. Polymers, 2017, 9, 561.	2.0	39
128	Multifunctional antimicrobial nanocomposites for food packaging applications. , 2017, , 265-303.		9
129	An overview of nanoparticles role in the improvement of barrier properties of bioplastics for food packaging applications. , 2017, , 391-424.		31
130	Effective Postharvest Preservation of Kiwifruit and Romaine Lettuce with a Chitosan Hydrochloride Coating. Coatings, 2017, 7, 196.	1.2	28
131	Effect of Cellulose Nanocrystals on Fire, Thermal and Mechanical Behavior of N,N'-Diallyl-phenylphosphoricdiamide Modified Poly(lactic acid). Journal of Renewable Materials, 2017, 5, 423-434.	1.1	6
132	Multifunctional nanostructured biopolymeric materials for therapeutic applications. , 2017, , 107-135.		1
133	Hydroxytyrosol as Active Ingredient in Poly(vinyl alcohol) Films for Food Packaging Applications. Journal of Renewable Materials, 2017, 5, 81-95.	1.1	15
134	Cure Kinetics of Epoxy/Rubber Polymer Blends. , 2017, , 211-237.		1
135	Skin Tissue Engineering. , 2017, , 1408-1423.		Ο
136	Computational Modeling of Polylactide and Its Cellulose-Reinforced Nanocomposites. , 2016, , 313-341.		4
137	Antimicrobial Properties and Cytocompatibility of PLGA/Ag Nanocomposites. Materials, 2016, 9, 37.	1.3	25
138	Effect of hydroxytyrosol methyl carbonate on the thermal, migration and antioxidant properties of <scp>PVA</scp> â€based films for active food packaging. Polymer International, 2016, 65, 872-882.	1.6	26
139	Poly(lactic acid)â€based nanocomposites filled with cellulose nanocrystals with modified surface: allâ€atom molecular dynamics simulations. Polymer International, 2016, 65, 892-898.	1.6	31
140	Preparation of alginate hydrogels containing silver nanoparticles: a facile approach for antibacterial applications. Polymer International, 2016, 65, 921-926.	1.6	43
141	Preparation and characterization of polybutyleneâ€succinate/poly(ethyleneâ€glycol)/cellulose nanocrystals ternary composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	28
142	Modulation of Acid Hydrolysis Reaction Time for the Extraction of Cellulose Nanocrystals from <i>Posidonia oceanica</i> Leaves. Journal of Renewable Materials, 2016, 4, 190-198.	1.1	21
143	Tensile, Thermal and Morphological Characterization of Cocoa Bean Shells (CBS)/Polycaprolactone-Based Composites. Journal of Renewable Materials, 2016, 4, 199-205. 	1.1	15
144	Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polymer Degradation and Stability, 2016, 132, 2-10.	2.7	54

JOSé MARÃA KENNY

#	Article	IF	CITATIONS
145	Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability, 2016, 132, 97-108.	2.7	222
146	Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. European Polymer Journal, 2016, 79, 1-12.	2.6	212
147	Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. European Polymer Journal, 2016, 80, 295-316.	2.6	80
148	Strain sensitivity of carbon nanotube cement-based composites for structural health monitoring. , 2016, , .		7
149	Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. International Journal of Biological Macromolecules, 2016, 89, 360-368.	3.6	161
150	Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review. Progress in Materials Science, 2016, 84, 192-275.	16.0	313
151	Effect of SWCNT introduction in random copolymers on material properties and fibroblast long term culture stability. Polymer Degradation and Stability, 2016, 132, 220-230.	2.7	8
152	Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops and Products, 2016, 94, 800-811.	2.5	307
153	Correlation between the High-Temperature Local Mobility of Heterocyclic Polyimides and Their Mechanical Properties. Macromolecules, 2016, 49, 6700-6710.	2.2	32
154	Relationship between morphology and electrical properties in PP/MWCNT composites: Processing-induced anisotropic percolation threshold. Materials Chemistry and Physics, 2016, 180, 284-290.	2.0	27
155	Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch. ACS Applied Materials & Interfaces, 2016, 8, 19197-19201.	4.0	40
156	Multiscale computer simulation of polymer nanocomposites based on thermoplastics. Polymer Science - Series C, 2016, 58, 2-15.	0.8	18
157	Effect of poly(dl-lactide-co-glycolide) nanoparticles or cellulose nanocrystals-based formulations on Pseudomonas syringae pv. tomato (Pst) and tomato plant development. Journal of Plant Diseases and Protection, 2016, 123, 301-310.	1.6	28
158	In-vitro degradation of PLGA nanoparticles in aqueous medium and in stem cell cultures by monitoring the cargo fluorescence spectrum. Polymer Degradation and Stability, 2016, 134, 296-304.	2.7	25
159	Effect of Wollastonite on the ablation resistance of EPDM based elastomeric heat shielding materials for solid rocket motors. Polymer Degradation and Stability, 2016, 130, 47-57.	2.7	57
160	CTAB modified dellite: A novel support for enzyme immobilization in bio-based electrochemical detection and its in vitro antimicrobial activity. Sensors and Actuators B: Chemical, 2016, 235, 46-55.	4.0	14
161	Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydrate Polymers, 2016, 149, 357-368.	5.1	94
162	Development and characterization of bionanocomposites based on poly(3â€hydroxybutyrate) and cellulose nanocrystals for packaging applications. Polymer International, 2016, 65, 1046-1053.	1.6	47

#	Article	IF	CITATIONS
163	PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydrate Polymers, 2016, 142, 105-113.	5.1	167
164	Tensile Behavior of Thermoplastic Films from Wheat Flours as Function of Raw Material Baking Properties. Journal of Polymers and the Environment, 2016, 24, 37-47.	2.4	16
165	Molecular dynamics simulations of uniaxial deformation of thermoplastic polyimides. Soft Matter, 2016, 12, 3972-3981.	1.2	61
166	Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 2016, 132, 145-156.	2.7	81
167	Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Industrial Crops and Products, 2016, 93, 276-289.	2.5	186
168	Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, 2016, 132, 157-168.	2.7	88
169	Mechanical Properties of a Polymer at the Interface Structurally Ordered by Graphene. Journal of Physical Chemistry C, 2016, 120, 6771-6777.	1.5	31
170	Characterization and enzymatic degradation study of poly(ε-caprolactone)-based biocomposites from almond agricultural by-products. Polymer Degradation and Stability, 2016, 132, 181-190.	2.7	26
171	Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 2016, 93, 290-301.	2.5	112
172	Poly(lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals. RSC Advances, 2016, 6, 9221-9231.	1.7	69
173	Synergistic Effect of Halloysite and Cellulose Nanocrystals on the Functional Properties of PVA Based Nanocomposites. ACS Sustainable Chemistry and Engineering, 2016, 4, 794-800.	3.2	120
174	Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications. Cement and Concrete Composites, 2016, 65, 200-213.	4.6	252
175	Innovative cool roofing membrane with integrated phase change materials: Experimental characterization of morphological, thermal and optic-energy behavior. Energy and Buildings, 2016, 112, 40-48.	3.1	31
176	Influence of Processing Conditions on Morphological, Thermal and Degradative Behavior of Nanocomposites Based on Plasticized Poly(3-hydroxybutyrate) and Organo-Modified Clay. Journal of Polymers and the Environment, 2016, 24, 12-22.	2.4	14
177	Ablation modeling of state of the art EPDM based elastomeric heat shielding materials for solid rocket motors. Computational Materials Science, 2016, 111, 460-480.	1.4	39
178	Solvent Uptake of Liquid Rubber Toughened Epoxy/Clay Nanocomposites. Advances in Polymer Technology, 2016, 35, .	0.8	6
179	Poly(butylene cyclohexanedicarboxylate/diglycolate) random copolymers reinforced with SWCNTs for multifunctional conductive biopolymer composites. EXPRESS Polymer Letters, 2016, 10, 111-124.	1.1	11
180	Scanning Electron Microscopy Evaluation of Dental Root Resorption Associated With Granuloma. Microscopy and Microanalysis, 2015, 21, 1264-1270.	0.2	13

#	Article	IF	CITATIONS
181	Structural aspects of mechanical properties of i <scp>PP</scp> â€based composites. I. Composite i <scp>PP</scp> fibers with <scp>VGCF</scp> nanofiller. Journal of Applied Polymer Science, 2015, 132, .	1.3	8
182	The effect of processing routes on the thermal and mechanical properties of poly(urethaneâ€isocyanurate) nanocomposites. Journal of Applied Polymer Science, 2015, 132, .	1.3	10
183	Effect of processing techniques on the 3 <scp>D</scp> microstructure of poly (<scp>l</scp> â€lactic) Tj ETQq1 1 Science, 2015, 132, .	0.784314 1.3	rgBT /Overlo 14
184	Membrane Made of Cellulose Acetate with Polyacrylic Acid Reinforced with Carbon Nanotubes and Its Applicability for Chromium Removal. International Journal of Polymer Science, 2015, 2015, 1-12.	1.2	52
185	Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. EXPRESS Polymer Letters, 2015, 9, 583-596.	1.1	168
186	Influence of the carbon nanotube surface modification on the microstructure of thermoplastic binders. RSC Advances, 2015, 5, 51621-51630.	1.7	26
187	Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Industrial Crops and Products, 2015, 74, 348-356.	2.5	174
188	Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique. Polymer Composites, 2015, 36, 1205-1212.	2.3	21
189	Nanocomposite hydrogels based on embedded PLGA nanoparticles in gelatin. Nanocomposites, 2015, 1, 46-50.	2.2	11
190	Glass optical fibre sensors for detection of through thickness moisture diffusion in glass reinforced composites under hostile environments. Advances in Applied Ceramics, 2015, 114, S76-S83.	0.6	9
191	Cure Kinetics of Epoxy/Rubber Polymer Blends. , 2015, , 1-27.		0
192	A comparative study between carbon nanotubes and carbon nanofibers as nanoinclusions in self-sensing concrete. , 2015, , .		4
193	Preparation and characterization of nickel chelating functionalized poly (lactic-co-glycolic acid) microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 122-128.	2.3	1
194	Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. Journal of Colloid and Interface Science, 2015, 445, 31-39.	5.0	75
195	The role of the interphase on the shear induced failure of multiwall carbon nanotubes reinforced epoxy nanocomposites. Journal of Applied Polymer Science, 2015, 132, .	1.3	4
196	Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: Innovative reuse of coastal plant. Industrial Crops and Products, 2015, 67, 439-447.	2.5	165
197	Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites. Materials Science and Engineering C, 2015, 47, 394-406.	3.8	42
198	Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 2015, 121, 265-275.	5.1	276

#	Article	IF	CITATIONS
199	Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Materials & Design, 2015, 72, 9-15.	5.1	41
200	Effect of different lignocellulosic fibres on poly($\hat{l}\mu$ -caprolactone)-based composites for potential applications in orthotics. RSC Advances, 2015, 5, 23798-23809.	1.7	31
201	Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. European Polymer Journal, 2015, 71, 126-139.	2.6	150
202	The role of nanocrystalline cellulose on the microstructure of foamed castor-oil polyurethane nanocomposites. Carbohydrate Polymers, 2015, 134, 110-118.	5.1	44
203	Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 2015, 64, 980-988.	2.5	87
204	Tensile and fatigue characterisation of textile cotton waste/polypropylene laminates. Composites Part B: Engineering, 2015, 81, 84-90.	5.9	37
205	A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage. Nanoscale Research Letters, 2015, 10, 984.	3.1	111
206	Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-block-butadiene-block-styrene) triblock copolymer modified epoxy resin–diamino diphenyl methane nanostructured blend systems. Physical Chemistry Chemical Physics, 2015, 17, 12760-12770.	1.3	28
207	Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 2015, 48, 84-93.	5.6	156
208	Liquid-rubber-modified epoxy/clay nanocomposites: effect of dispersion methods on morphology and ultimate properties. Polymer Bulletin, 2015, 72, 1703-1722.	1.7	26
209	Parameterization of electrostatic interactions for molecular dynamics simulations of heterocyclic polymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 912-923.	2.4	36
210	Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly(lactic) acid films: effect of cellulose nanocrystals and a masterbatch process. RSC Advances, 2015, 5, 32350-32357.	1.7	69
211	Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 2015, 73, 433-446.	2.6	147
212	Electrical characteristics of carbon nanotube-doped composites. Physics-Uspekhi, 2015, 58, 209-251.	0.8	61
213	Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer Degradation and Stability, 2015, 121, 105-115.	2.7	95
214	Biodegradable nanocomposites based on poly(ester-urethane) and nanosized hydroxyapatite: Plastificant and reinforcement effects. Polymer Degradation and Stability, 2015, 121, 171-179.	2.7	35
215	Effect of cellulose nanocrystals on the properties of pea starch–poly(vinyl alcohol) blend films. Journal of Materials Science, 2015, 50, 6979-6992.	1.7	59
216	Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate- g -poly (lactic acid) films before and after accelerated UV weathering. Industrial Crops and Products, 2015, 77, 833-844.	2.5	84

#	Article	IF	CITATIONS
217	Preparation of Alginate/Graphene Oxide Hybrid Films and Their Integration in Triboelectric Generators. European Journal of Inorganic Chemistry, 2015, 2015, 1192-1197.	1.0	25
218	New environmentally friendly composite laminates with epoxidized linseed oil (ELO) and slate fiber fabrics. Composites Part B: Engineering, 2015, 71, 203-209.	5.9	46
219	Design, development and characterization of a nanomagnetic system based on iron oxide nanoparticles encapsulated in PLLA-nanospheres. European Polymer Journal, 2015, 62, 145-154.	2.6	12
220	Mechanical and thermal properties of epoxy/silicon carbide nanofiber composites. Polymers for Advanced Technologies, 2015, 26, 142-146.	1.6	21
221	The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 2015, 50, 863-872.	1.7	36
222	Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Composites Part B: Engineering, 2015, 69, 507-515.	5.9	135
223	Polyethylene/sepiolite fibers. Influence of drawing and nanofiller content on the crystal morphology and mechanical properties. Polymer Engineering and Science, 2015, 55, 1096-1103.	1.5	12
224	STRAIN-SENSING CARBON NANOTUBE CEMENT-BASED COMPOSITES FOR APPLICATIONS IN STRUCTURAL HEALTH MONITORING: PREPARATION AND MODELLING ISSUES. , 2015, , .		3
225	The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review. Scientific World Journal, The, 2014, 2014, 1-18.	0.8	141
226	Crystallization behavior of diblock copolymers based on PCL and PLLA biopolymers. Journal of Applied Crystallography, 2014, 47, 1948-1957.	1.9	16
227	Influence of the Processing Parameters on the Electrospinning of Biopolymeric Fibers. Journal of Renewable Materials, 2014, 2, 23-34.	1.1	30
228	Processing and Characterization of Nano-biocomposites Based on Mater-Bi® with Layered Silicates. Journal of Renewable Materials, 2014, 2, 42-51.	1.1	2
229	Revalorisation of Posidonia Oceanica as Reinforcement in Polyethylene/Maleic Anhydride Grafted Polyethylene Composites. Journal of Renewable Materials, 2014, 2, 66-76.	1.1	27
230	Hot press transferring of graphene nanoplatelets on polyurethane block copolymers film for electroactive shape memory devices. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1100-1106.	2.4	11
231	Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films. Applied Physics Letters, 2014, 105, 153111.	1.5	35
232	Flexible triboelectric generator and pressure sensor based on poly[(<i>R</i>)â€3â€hydroxybutyric acid] biopolymer. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 859-863.	2.4	20
233	Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibres. Industrial Crops and Products, 2014, 56, 175-186.	2.5	90
234	Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocolloids, 2014, 35, 463-470.	5.6	393

#	Article	IF	CITATIONS
235	PVA bio-nanocomposites: A new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydrate Polymers, 2014, 99, 47-58.	5.1	126
236	A polycaprolactoneâ€based compatibilization treatment to improve dispersion and interphase structure of silica polyurethane composites. Polymer Engineering and Science, 2014, 54, 1817-1826.	1.5	6
237	Effect of alumina nanoparticles on the thermal properties of carbon fibreâ€reinforced composites. Fire and Materials, 2014, 38, 339-355.	0.9	21
238	Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 2014, 107, 16-24.	5.1	250
239	Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based nanocomposites: Thermal and morphological properties. Polymer Degradation and Stability, 2014, 108, 158-165.	2.7	60
240	Synthesis, characterization and hydrolytic degradation of polyester-urethanes obtained by lipase biocatalysis. Polymer Degradation and Stability, 2014, 108, 188-194.	2.7	24
241	Crystallization and thermal characterization of biodegradable tri-block copolymers and poly(ester-urethane)s based on PCL andÂPLLA. Polymer Degradation and Stability, 2014, 108, 140-150.	2.7	30
242	Effects of dielectric barrier discharge in air on morphological and electrical properties of graphene nanoplatelets and multi-walled carbon nanotubes. Journal of Physics and Chemistry of Solids, 2014, 75, 858-868.	1.9	11
243	Polyethyleneâ€based nanocomposite films: Structure/properties relationship. Polymer Engineering and Science, 2014, 54, 1931-1940.	1.5	2
244	Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 2014, 56, 77-91.	2.6	159
245	Nanostructured polystyrene films engineered by plasma processes: Surface characterization and stem cell interaction. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
246	Preparation of transparent and conductive cellulose nanocrystals/graphene nanoplatelets films. Journal of Materials Science, 2014, 49, 1009-1013.	1.7	30
247	Effect of extrusion conditions and post-extrusion techniques on the morphology and thermal/mechanical properties of polycaprolactone/clay nanocomposites. Journal of Composite Materials, 2014, 48, 2059-2070.	1.2	11
248	Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polymer Degradation and Stability, 2014, 99, 127-135.	2.7	45
249	Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: Morphology, thermal properties and mechanical behavior. Carbohydrate Polymers, 2014, 103, 22-31.	5.1	114
250	Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydrate Polymers, 2014, 101, 1122-1133.	5.1	161
251	Thermally-activated shape memory behaviour of bionanocomposites reinforced with cellulose nanocrystals. Cellulose, 2014, 21, 4231-4246.	2.4	65
252	CHAPTER 6. Electrospinning of PLA. RSC Polymer Chemistry Series, 2014, , 171-194.	0.1	1

#	Article	IF	CITATIONS
253	CHAPTER 11. Biomaterials for Tissue Engineering Based on Nano-structured Poly(Lactic Acid). RSC Polymer Chemistry Series, 2014, , 266-285.	0.1	1
254	Mechanical effect of static loading on endodontically treated teeth restored with fiberâ€reinforced posts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 384-394.	1.6	16
255	An Armadillo-Like Flexible Thermal Protection System for Inflatable Decelerators: A Novel Paradigm. Macromolecular Materials and Engineering, 2014, 299, 379-390.	1.7	6
256	Synthesis of PLLA-b-PCL-b-PLLA linear tri-block copolymers and their corresponding poly(ester-urethane)s: effect of the molecular weight on their crystallisation and mechanical properties. RSC Advances, 2014, 4, 8510.	1.7	36
257	Thermal and mechanical characterisation of <i>Phormium tenax</i> -reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 2014, 27, 1493-1503.	2.6	18
258	Mechanical and shapeâ€memory properties of poly(mannitol sebacate)/cellulose nanocrystal nanocomposites. Journal of Polymer Science Part A, 2014, 52, 3123-3133.	2.5	43
259	Influence of the carbon nanofiller surface curvature on the initiation of crystallization in thermoplastic polymers. RSC Advances, 2014, 4, 48606-48612.	1.7	34
260	Okra Fibres as Potential Reinforcement in Biocomposites. , 2014, , 175-190.		5
261	Liquid rubber and silicon carbide nanofiber modified epoxy nanocomposites: Volume shrinkage, cure kinetics and properties. Composites Science and Technology, 2014, 102, 65-73.	3.8	36
262	Processing of nanostructured polymers and advanced polymeric based nanocomposites. Materials Science and Engineering Reports, 2014, 85, 1-46.	14.8	190
263	Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites. Journal of Materials Science, 2014, 49, 6257-6269.	1.7	48
264	Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer, 2014, 55, 3720-3728.	1.8	168
265	Shape memory polymers: properties, synthesis and applications. , 2014, , 204-236.		25
266	Spin coated cellulose nanocrystal/silver nanoparticle films. Carbohydrate Polymers, 2014, 113, 394-402.	5.1	23
267	Cellulose nanocrystals thin films as gate dielectric for flexible organic field-effect transistors. Materials Letters, 2014, 126, 55-58.	1.3	38
268	Toward the microstructure–properties relationship in MWCNT/epoxy composites: Percolation behavior and dielectric spectroscopy. Composites Science and Technology, 2014, 96, 38-46.	3.8	38
269	Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Applied Clay Science, 2014, 93-94, 78-84.	2.6	24
270	Reaction-Induced Phase Separation and Thermomechanical Properties in Epoxidized Styrene- <i>block</i> -butadiene- <i>block</i> -styrene Triblock Copolymer Modified Epoxy/DDM System. Industrial & Engineering Chemistry Research, 2014, 53, 6941-6950.	1.8	54

#	Article	IF	CITATIONS
271	PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 2014, 107, 139-149.	2.7	243
272	Inclusion of PLLA nanoparticles in thermosensitive semi-interpenetrating polymer networks. Polymer Degradation and Stability, 2014, 108, 280-287.	2.7	7
273	Effect of Fiber Surface Treatments on Thermo-Mechanical Behavior of Poly(Lactic Acid)/Phormium Tenax Composites. Journal of Polymers and the Environment, 2013, 21, 881-891.	2.4	22
274	Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon, 2013, 63, 274-282.	5.4	50
275	Extraction of Cellulose Nanocrystals from Phormium tenax Fibres. Journal of Polymers and the Environment, 2013, 21, 319-328.	2.4	98
276	Protein Encapsulation in Biodegradable Polymeric Nanoparticles: Morphology, Fluorescence Behaviour and Stem Cell Uptake. Macromolecular Bioscience, 2013, 13, 1204-1212.	2.1	27
277	Okra (Abelmoschus esculentus) Fibre Based PLA Composites: Mechanical Behaviour and Biodegradation. Journal of Polymers and the Environment, 2013, 21, 726-737.	2.4	49
278	Poly(methyl methacrylate)/Graphene Oxide Layered Films as Generators for Mechanical Energy Harvesting. ACS Applied Materials & Interfaces, 2013, 5, 3770-3775.	4.0	8
279	Effect of alkali and silane treatments on mechanical and thermal behavior of Phormium tenax fibers. Fibers and Polymers, 2013, 14, 423-427.	1.1	57
280	Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose, 2013, 20, 2393-2402.	2.4	64
281	Effect of organically modified nanoclay on the miscibility, rheology, morphology and properties of epoxy/carboxyl-terminated (butadiene-co-acrylonitrile) blend. Soft Matter, 2013, 9, 2899.	1.2	96
282	The relationship between nanosilica dispersion degree and the tensile properties of polyurethane nanocomposites. Colloid and Polymer Science, 2013, 291, 2745-2753.	1.0	8
283	Multistimuli-responsive hydrogels of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) containing graphene. Colloid and Polymer Science, 2013, 291, 2681-2687.	1.0	13
284	Effects of the nanoparticles on the thermal expansion and mechanical properties of unsaturated polyester/clay nanocomposites. Composites Part A: Applied Science and Manufacturing, 2013, 45, 44-48.	3.8	64
285	Effect of boron carbide nanoparticles on the fire reaction and fire resistance of carbon fiber/epoxy composites. Polymer, 2013, 54, 5154-5165.	1.8	48
286	EPDM based heat shielding materials for Solid Rocket Motors: AÂcomparative study of different fibrous reinforcements. Polymer Degradation and Stability, 2013, 98, 2131-2139.	2.7	83
287	Synthesis and characterization of PCL–PLLA polyurethane with shape memory behavior. European Polymer Journal, 2013, 49, 893-903.	2.6	137
288	Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly(lactic acid) based systems. Polymer Degradation and Stability, 2013, 98, 2742-2751.	2.7	42

#	Article	IF	CITATIONS
289	Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation. Carbohydrate Polymers, 2013, 96, 621-627.	5.1	94
290	Shear induced orientation of phase segregated block copolymer/epoxy blends. European Polymer Journal, 2013, 49, 3359-3365.	2.6	6
291	Kinetic and chemorheological modeling of the vitrification effect of highly reactive poly(urethane-isocyanurate) thermosets. Thermochimica Acta, 2013, 574, 88-97.	1.2	18
292	The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring. Composites Science and Technology, 2013, 80, 73-79.	3.8	95
293	Transfer writing of foldable graphene nanoplatelet patterns on paper substrates. Materials Letters, 2013, 113, 54-58.	1.3	4
294	Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 2013, 94, 154-169.	5.1	918
295	Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Materials & Design, 2013, 49, 728-735.	5.1	154
296	Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Composites Part A: Applied Science and Manufacturing, 2013, 46, 166-172.	3.8	143
297	Combined Effects of Ag Nanoparticles and Oxygen Plasma Treatment on PLGA Morphological, Chemical, and Antibacterial Properties. Biomacromolecules, 2013, 14, 626-636.	2.6	52
298	Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydrate Polymers, 2013, 96, 611-620.	5.1	104
299	Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I. Carbohydrate Polymers, 2013, 97, 825-836.	5.1	169
300	Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. Journal of Food Engineering, 2013, 118, 117-124.	2.7	192
301	A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Materials Letters, 2013, 105, 4-7.	1.3	110
302	Liquid Droplet excitation of freestanding poly(methyl methacrylate)/graphene oxide films for mechanical energy harvesting. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1028-1032.	2.4	11
303	Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 2013, 38, 1720-1747.	11.8	527
304	Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: Part II. Carbohydrate Polymers, 2013, 97, 837-848.	5.1	53
305	Morphological and Mechanical Characterization of Nanostructured Thermosets from Epoxy and Styrene- <i>block</i> -Butadiene- <i>block</i> -Styrene Triblock Copolymer. Industrial & Engineering Chemistry Research, 2013, 52, 9121-9129.	1.8	55
306	Methods for Improving the Integration of Functionalized Carbon Nanotubes in Polymers. RSC Nanoscience and Nanotechnology, 2013, , 234-252.	0.2	2

#	Article	IF	CITATIONS
307	Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 2013, 119, 236-243.	2.7	176
308	Clay nanostructure and its localisation in an epoxy/liquid rubber blend. RSC Advances, 2013, 3, 24634.	1.7	31
309	Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. Journal of Applied Polymer Science, 2013, 128, 3220-3230.	1.3	130
310	Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Research Letters, 2013, 8, 448.	3.1	291
311	Biodegradable Composite Scaffolds: A Strategy to Modulate Stem Cell Behaviour. Recent Patents on Drug Delivery and Formulation, 2013, 7, 9-17.	2.1	14
312	Integrated PLGA–Ag nanocomposite systems to control the degradation rate and antibacterial properties. Journal of Applied Polymer Science, 2013, 130, 1185-1193.	1.3	33
313	Nanocomposites Based on PLLA and Multi Walled Carbon Nanotubes Support the Myogenic Differentiation of Murine Myoblast Cell Line. ISRN Tissue Engineering, 2013, 2013, 1-8.	0.5	6
314	Flexible Transistors Exploiting P3HT on Paper Substrate and Graphene Oxide Film as Gate Dielectric: Proof of Concept. Science of Advanced Materials, 2013, 5, 530-533.	0.1	11
315	Mechanical and thermal properties of crab chitin reinforced carboxylated SBR composites. EXPRESS Polymer Letters, 2012, 6, 396-409.	1.1	17
316	Enhancing Osteoconduction of PLLA-Based Nanocomposite Scaffolds for Bone Regeneration Using Different Biomimetic Signals to MSCs. International Journal of Molecular Sciences, 2012, 13, 2439-2458.	1.8	37
317	LIGHT INDUCED CHANGE IN CONDUCTIVITY OF GRAPHENE OXIDE FILMS PATTERNED BY METAL MASKS. Functional Materials Letters, 2012, 05, 1250034.	0.7	0
318	Towards materials with enhanced electro-mechanical response: CaCu3Ti4O12–polydimethylsiloxane composites. Journal of Materials Chemistry, 2012, 22, 24705.	6.7	72
319	Deposition of amino-functionalized polyhedral oligomeric silsesquioxanes on graphene oxide sheets immobilized onto an amino-silane modified silicon surface. Journal of Materials Chemistry, 2012, 22, 6213.	6.7	73
320	Compressive and flexural behaviour of fibre reinforced endodontic posts. Journal of Dentistry, 2012, 40, 968-978.	1.7	45
321	Emerging methods for producing graphene oxide composites in coatings with multifunctional properties. Journal of Materials Chemistry, 2012, 22, 21355.	6.7	9
322	Morphological and thermal behavior of porous biopolymeric nanoparticles. European Polymer Journal, 2012, 48, 1152-1159.	2.6	25
323	Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 2012, 90, 948-956.	5.1	420
324	Ablative properties of carbon black and MWNT/phenolic composites: A comparative study. Composites Part A: Applied Science and Manufacturing, 2012, 43, 174-182.	3.8	143

#	Article	IF	CITATIONS
325	The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes. Nanoscale Research Letters, 2012, 7, 674.	3.1	30
326	Cure kinetics of a highly reactive silica–polyurethane nanocomposite. Thermochimica Acta, 2012, 549, 172-178.	1.2	18
327	Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degradation and Stability, 2012, 97, 2027-2036.	2.7	193
328	Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: Study on the morphology, crystallinity structure and thermal stability. Polymer Degradation and Stability, 2012, 97, 2052-2059.	2.7	82
329	Effect of the molecular weight on the crystallinity of PCL-b-PLLA di-block copolymers. Polymer, 2012, 53, 4561-4568.	1.8	95
330	Tuning Multi/Pluri-Potent Stem Cell Fate by Electrospun Poly(<scp>l</scp> -lactic) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 542 2.6	Td (acid)-C
331	Biodegradable Composite Scaffolds: A Strategy to Modulate Stem Cell Behaviour. Recent Patents on Drug Delivery and Formulation, 2012, 7, 9-17.	2.1	0
332	Cure kinetics and thermal stability of micro and nanostructured thermosetting blends of epoxy resin and epoxidized styreneâ€ <i>block</i> â€butadieneâ€ <i>block</i> â€styrene triblock copolymer systems. Polymer Engineering and Science, 2012, 52, 2336-2347.	1.5	37
333	Graphene based composites prepared through exfoliation of graphite platelets in methyl methacrylate/poly(methyl methacrylate). Polymer International, 2012, 61, 1079-1083.	1.6	16
334	Biocompatible Poly(<scp>L</scp> â€lactide)/MWCNT Nanocomposites: Morphological Characterization, Electrical Properties, and Stem Cell Interaction. Macromolecular Bioscience, 2012, 12, 870-881.	2.1	48
335	A Photoresponsive Hybrid Nanomaterial Based on Graphene and Polyhedral Oligomeric Silsesquioxanes. European Journal of Inorganic Chemistry, 2012, 2012, 5282-5287.	1.0	18
336	Plasma surface modification of porous PLLA films: Analysis of surface properties and <i>in vitro</i> hydrolytic degradation. Journal of Applied Polymer Science, 2012, 125, E239.	1.3	30
337	Biodegradation of <i>Phormium tenax</i> /poly(lactic acid) composites. Journal of Applied Polymer Science, 2012, 125, E562.	1.3	44
338	Effect of nanoclay and carboxyl-terminated (butadiene-co-acrylonitrile) (CTBN) rubber on the reaction induced phase separation and cure kinetics of an epoxy/cyclic anhydride system. Journal of Materials Science, 2012, 47, 5241-5253.	1.7	44
339	The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field. Carbon, 2012, 50, 2453-2464.	5.4	127
340	Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers, 2012, 87, 1596-1605.	5.1	538
341	Poly(ε-caprolactone) reinforced with fibres of Poly(methyl methacrylate) loaded with multiwall carbon nanotubes or graphene nanoplatelets. Chemical Engineering Journal, 2012, 195-196, 140-148.	6.6	37
342	POSS vapor grafting on graphene oxide film. Chemical Physics Letters, 2012, 537, 84-87.	1.2	20

#	Article	IF	CITATIONS
343	Stem cell-biomaterial interactions for regenerative medicine. Biotechnology Advances, 2012, 30, 338-351.	6.0	179
344	Nanostructured morphology of a random P(DLLA-co-CL) copolymer. Nanoscale Research Letters, 2012, 7, 103.	3.1	12
345	New multifunctional poly(lactide acid) composites: Mechanical, antibacterial, and degradation properties. Journal of Applied Polymer Science, 2012, 124, 87-98.	1.3	87
346	Novel Poly(L-lactide) PLLA/SWNTs Nanocomposites for Biomedical Applications: Material Characterization and Biocompatibility Evaluation. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 541-556.	1.9	30
347	Epoxy–carbon nanotube composites. , 2011, , 230-261.		1
348	Anisotropic Electrical Transport Properties of Graphene Nanoplatelets/Pyrene Composites by Electric-Field-Assisted Thermal Annealing. Journal of Physical Chemistry C, 2011, 115, 16652-16656.	1.5	13
349	In situ production of high filler content graphene-based polymer nanocomposites by reactive processing. Journal of Materials Chemistry, 2011, 21, 16544.	6.7	53
350	Wettability and switching of electrical conductivity in UV irradiated graphene oxide films. Diamond and Related Materials, 2011, 20, 871-874.	1.8	21
351	A nanostructured ablative bulk molding compound: Development and characterization. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1197-1204.	3.8	76
352	Dielectric properties at microwave frequencies of poly(É›-caprolactone)/CNF films and electrospun mats. Synthetic Metals, 2011, 161, 911-918.	2.1	5
353	Processing and Final Properties Improvement of Polyolefin‣epiolite and Carbon Nanofibre Nanocomposites. Macromolecular Symposia, 2011, 301, 128-135.	0.4	4
354	Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 215-223.	2.6	42
355	Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polymer Degradation and Stability, 2011, 96, 2120-2129.	2.7	133
356	Effect of carbon nanofibers on the cure kinetics of unsaturated polyester resin: Thermal and chemorheological modelling. Composites Science and Technology, 2011, 71, 1507-1507.	3.8	38
357	PLGA/Ag nanocomposites: in vitro degradation study and silver ion release. Journal of Materials Science: Materials in Medicine, 2011, 22, 2735-2744.	1.7	50
358	Effect of carbon black nanoparticle intrinsic properties on the self-monitoring performance of glass fibre reinforced composite rods. Composites Science and Technology, 2011, 71, 1-8.	3.8	38
359	Carbon nanofibers for strain and impact damage sensing in glass fiber reinforced composites based on an unsaturated polyester resin. Polymer Composites, 2011, 32, 766-775.	2.3	50
360	Poly(lactic acid)/ <i>Phormium tenax</i> composites: Morphology and thermoâ€mechanical behavior. Polymer Composites, 2011, 32, 1362-1368.	2.3	35

JOSé MARÃA KENNY

#	Article	IF	CITATIONS
361	Recent Advances in Clay/Polymer Nanocomposites. Advanced Materials, 2011, 23, 5229-5236.	11.1	262
362	Production and properties of solventâ€cast poly(εâ€caprolactone) composites with carbon nanostructures. Journal of Applied Polymer Science, 2011, 119, 3544-3552.	1.3	16
363	Synthesis and thermal characterization of phenolic resin/silica nanocomposites prepared with high shear rateâ€mixing technique. Journal of Applied Polymer Science, 2011, 120, 2632-2640.	1.3	44
364	Impact damage sensing in glass fiber reinforced composites based on carbon nanotubes by electrical resistance measurements. Journal of Applied Polymer Science, 2011, 122, 2829-2836.	1.3	39
365	Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus) Tj ETQq1 1 0.784	314 rgBT 3.8	/Oyerlock 10
366	Radiofrequency plasma assisted exfoliation and reduction of large-area graphene oxide platelets produced by a mechanical transfer process. Chemical Physics Letters, 2011, 508, 285-288.	1.2	18
367	Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon, 2011, 49, 2370-2379.	5.4	76
368	Mechanotransduction: Tuning Stem Cells Fate. Journal of Functional Biomaterials, 2011, 2, 67-87.	1.8	46
369	Electric field assisted thermal annealing reorganization of graphene oxide/polystyrene latex films. EXPRESS Polymer Letters, 2011, 5, 819-824.	1.1	5
370	Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene) copolymers and silver nanoparticles. EXPRESS Polymer Letters, 2011, 5, 104-118.	1.1	24
371	Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 2010, 70, 116-122.	3.8	447
372	Dynamic mechanical properties of oil palm microfibrilâ€reinforced natural rubber composites. Journal of Applied Polymer Science, 2010, 117, 1298-1308.	1.3	57
373	Compatibilization and development of layered silicate nanocomposites based of unsatured polyester resin and customized intercalation agent. Journal of Applied Polymer Science, 2010, 115, 3659-3666.	1.3	9
374	Development of unsaturated polyester matrix – carbon nanofibers nanocomposites with improved electrical properties. Journal of Applied Polymer Science, 2010, 117, 1658-1666.	1.3	17
375	Development and thermal behaviour of ternary PLA matrix composites. Polymer Degradation and Stability, 2010, 95, 2200-2206.	2.7	132
376	Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability, 2010, 95, 2126-2146.	2.7	823
377	Modeling diffusion-control in the cure kinetics of epoxy-amine thermoset resins: An approach based on configurational entropy. Polymer, 2010, 51, 5833-5845.	1.8	47
378	Phenolic matrix nanocomposites based on commercial grade resols: Synthesis and characterization. Composites Science and Technology, 2010, 70, 571-577.	3.8	38

#	Article	IF	CITATIONS
379	Selective deposition of semiconducting single-walled carbon nanotubes onto amino-silane modified indium tin-oxide surface for the development of poly(3-hexylthiophene)/carbon-nanotube photovoltaic heterojunctions. Carbon, 2010, 48, 861-867.	5.4	15
380	Mapping of carbon nanotubes in the polystyrene domains of a polystyrene-b-polyisoprene-b-polystyrene block copolymer matrix using electrostatic force microscopy. Carbon, 2010, 48, 2590-2595.	5.4	22
381	Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT:PSS polymer composites. Chemical Physics Letters, 2010, 494, 264-268.	1.2	34
382	Electrodeposition of transparent and conducting graphene/carbon nanotube thin films. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2461-2466.	0.8	58
383	Oil palm microcomposites: Processing and mechanical behavior. Polymer Engineering and Science, 2010, 50, 1853-1863.	1.5	18
384	Microstructure and Cytocompatibility of Electrospun Nanocomposites Based on Poly(É>-Caprolactone) and Carbon Nanostructures. International Journal of Artificial Organs, 2010, 33, 271-282.	0.7	26
385	MWNT-Doped Epoxy Matrix for Detecting Impact Damages in Fiber Reinforced Composites by Electrical Resistance Measurements. , 2010, , .		0
386	Probing the Sequestering of Carbon Nanotubes in the PS Domains of SIS Block Copolymer Matrix using Electrostatic Force Microscopy. , 2010, , .		0
387	Use of butylamine modified graphene sheets in polymer solar cells. Journal of Materials Chemistry, 2010, 20, 995-1000.	6.7	99
388	Morphology and Photoelectrical Properties of Solution Processable Butylamine-Modified Graphene- and Pyrene-Based Organic Semiconductor. Journal of Physical Chemistry C, 2010, 114, 11252-11257.	1.5	17
389	Micropatterned hydrogenated amorphous carbon guides mesenchymal stem cells towards neuronal differentiation. , 2010, 20, 231-244.		61
390	Microstructure and cytocompatibility of electrospun nanocomposites based on poly(epsilon-caprolactone) and carbon nanostructures. International Journal of Artificial Organs, 2010, 33, 271-82.	0.7	4
391	Nanofibrillar self-organization of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C ₆₁ -butyric acid methyl ester by dip-coating: a simple method to obtain efficient bulk heterojunction solar cells. Nanotechnology, 2009, 20, 095603.	1.3	9
392	Hydrogenated Amorphous Carbon Nanopatterned Film Designs Drive Human Bone Marrow Mesenchymal Stem Cell Cytoskeleton Architecture. Tissue Engineering - Part A, 2009, 15, 3139-3149.	1.6	57
393	New anthraceneâ€containing phenylene―or thienyleneâ€vinylene copolymers: Synthesis, characterization, photophysics, and photovoltaics. Journal of Applied Polymer Science, 2009, 113, 1173-1181.	1.3	6
394	Role of PLLA plasma surface modification in the interaction with human marrow stromal cells. Journal of Applied Polymer Science, 2009, 114, 3602-3611.	1.3	37
395	Nanostructured physical gel of SBS block copolymer and Ag/DT/SBS nanocomposites. Journal of Materials Science, 2009, 44, 1287-1293.	1.7	14
396	Processing and properties of poly(Îμ-caprolactone)/carbon nanofibre composite mats and films obtained by electrospinning and solvent casting. Journal of Materials Science, 2009, 44, 4789-4795.	1.7	30

#	Article	IF	CITATIONS
397	Modelling of the chemo–rheological behavior of thermosetting polymer nanocomposites. Polymer Composites, 2009, 30, 1-12.	2.3	19
398	Mechanical properties of natural fibers/polyamides composites. Polymer Composites, 2009, 30, 257-264.	2.3	39
399	Dynamic mechanical analysis of oil palm microfibril-reinforced acrylonitrile butadiene rubber composites. Polymer Composites, 2009, 31, NA-NA.	2.3	11
400	Poly(<i>N</i> , <i>N</i> limethylacrylamide) hydrogels obtained by frontal polymerization. Journal of Polymer Science Part A, 2009, 47, 1422-1428.	2.5	56
401	Electrospun poly(ε-caprolactone)/Ca-deficient hydroxyapatite nanohybrids: Microstructure, mechanical properties and cell response by murine embryonic stem cells. Materials Science and Engineering C, 2009, 29, 2063-2071.	3.8	71
402	Surfactant assisted selective confinement of carbon nanotubes functionalized with octadecylamine in a poly(styrene-b-isoprene-b-styrene) block copolymer matrix. Carbon, 2009, 47, 2474-2480.	5.4	28
403	Confinement of Functionalized Graphene Sheets by Triblock Copolymers. Journal of Physical Chemistry C, 2009, 113, 17973-17978.	1.5	38
404	Plasma Fluorination of Chemically Derived Graphene Sheets and Subsequent Modification With Butylamine. Chemistry of Materials, 2009, 21, 3433-3438.	3.2	151
405	Stimuli Responsive Hydrogels Prepared by Frontal Polymerization. Biomacromolecules, 2009, 10, 2672-2677.	2.6	95
406	Surfactant Effects on Morphology-Properties Relationships of Silver-poly(styrene-<1>b 1 -isoprene-<1>b 1 -styrene) Block Copolymer Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 2128-2139.	0.9	10
407	Use of plasma fluorinated single-walled carbon nanotubes for the preparation of nanocomposites with epoxy matrix. Composites Science and Technology, 2008, 68, 1008-1014.	3.8	56
408	Morphological analysis of self-assembled SIS block copolymer matrices containing silver nanoparticles. Composites Science and Technology, 2008, 68, 1631-1636.	3.8	23
409	[2.2]Paracyclophane-based molecular systems for the development of organic solar cells. Thin Solid Films, 2008, 516, 7193-7198.	0.8	27
410	Effects of carbon nanotubes (CNTs) on the processing and in-vitro degradation of poly(dl-lactide-co-glycolide)/CNT films. Journal of Materials Science: Materials in Medicine, 2008, 19, 2377-2387.	1.7	73
411	Statistical analysis of the mechanical properties of natural fibers and their composite materials. II. Composite materials. Polymer Composites, 2008, 29, 321-325.	2.3	10
412	Statistical analysis of the mechanical properties of natural fibers and their composite materials. I. Natural fibers. Polymer Composites, 2008, 29, 313-320.	2.3	49
413	Polyaniline/multiwalled carbon nanotube systems: Dispersion of CNT and CNT/PANI interaction. Polymer Engineering and Science, 2008, 48, 1872-1877.	1.5	38
414	Selfâ€Assembling of SBS Block Copolymers as Templates for Conductive Silver Nanocomposites. Macromolecular Materials and Engineering, 2008, 293, 568-573.	1.7	34

#	Article	IF	CITATIONS
415	Influence of Clay Modification on the Properties of Resol Nanocomposites. Macromolecular Materials and Engineering, 2008, 293, 878-886.	1.7	21
416	Anisotropic Electrical Transport Properties of Aligned Carbon Nanotube/PMMA Films Obtained by Electricâ€Fieldâ€Assisted Thermal Annealing. Macromolecular Materials and Engineering, 2008, 293, 867-871.	1.7	19
417	Chemorheological behaviour of double-walled carbon nanotube-epoxy nanocomposites. Composites Science and Technology, 2008, 68, 1862-1868.	3.8	35
418	Organized fluidic assembly of single-walled carbon nanotubes onto fluorine-doped tin-oxide surface with modified wettability. Carbon, 2008, 46, 372-375.	5.4	1
419	Solution casting of transparent and conductive carbon nanotubes/poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) films under a magnetic field. Carbon, 2008, 46, 1513-1517.	5.4	11
420	Analysis of the biomineralization process on SWNT-COOH and F-SWNT films. Materials Science and Engineering C, 2008, 28, 1522-1529.	3.8	28
421	Electrodeposition of carbon nanotube semi-transparent thin films: A facile route for preparing photoactive polymeric hybrid materials. Diamond and Related Materials, 2008, 17, 1573-1576.	1.8	7
422	Patterning of [2.2]paracyclophane derivative modified single-walled carbon nanotubes through grid-assisted deposition. Journal of Materials Chemistry, 2008, 18, 484-488.	6.7	14
423	Novel Anthracene-Core Molecule for the Development of Efficient PCBM-Based Solar Cells. Chemistry of Materials, 2008, 20, 32-34.	3.2	107
424	Realization of porous poly(methyl methacrylate) films filled with electrodeposited carbon nanotubes. Nanotechnology, 2008, 19, 295301.	1.3	2
425	Polypropylene-natural fibre composites. Analysis of fibre structure modification during compounding and its influence on the final properties. Composite Interfaces, 2008, 15, 111-129.	1.3	32
426	PHENOLIC MATRIX NANOCOMPOSITES BASED ON COMMERCIAL GRADE RESOLS SYNTHESIS, CHARACTERIZATION AND COMPARISON WITH MICROCOMPOSITES. AIP Conference Proceedings, 2008, , .	0.3	2
427	MORPHOLOGY AND RHEOLOGICAL BEHAVIOUR OF Ag-SBS NANOCOMPOSITE GELS. AIP Conference Proceedings, 2008, , .	0.3	0
428	Electrodeposition of polyfluorene on a carbon nanotube electrode. Nanotechnology, 2007, 18, 115702.	1.3	10
429	Relationship between Water Absorption and Dielectric Behavior of Glass Fiber Reinforced Unsaturated Polyester Resin. Journal of Composite Materials, 2007, 41, 393-402.	1.2	8
430	A Silicone Treatment Compared to Traditional Natural Fiber Treatments: Effect on the Mechanical and Viscoelastic Properties of Jute—Vinylester Laminates. Journal of Composite Materials, 2007, 41, 2005-2024.	1.2	19
431	Dynamics of Six Generations of PAMAM Dendrimers As Studied by Dielectric Relaxation Spectroscopy. Macromolecules, 2007, 40, 5212-5221.	2.2	47
432	Dynamics of Multifunctional Polyhedral Oligomeric Silsesquioxane/Poly(propylene oxide) Nanocomposites As Studied by Dielectric Relaxation Spectroscopy and Dynamic Mechanical Spectroscopy. Macromolecules, 2007, 40, 6239-6248.	2.2	36

#	Article	IF	CITATIONS
433	Synthesis and photoelectrical properties of carbon nanotube–dendritic porphyrin light harvesting molecule systems. Diamond and Related Materials, 2007, 16, 658-663.	1.8	28
434	Natural fiber suspensions in thermoplastic polymers. I. Analysis of fiber damage during processing. Journal of Applied Polymer Science, 2007, 103, 2501-2506.	1.3	19
435	Mechanical properties of polypropylene composites based on natural fibers subjected to multiple extrusion cycles. Journal of Applied Polymer Science, 2007, 103, 228-237.	1.3	49
436	Structure-properties relationship in resol/montmorillonite nanocomposites. Journal of Applied Polymer Science, 2007, 104, 3082-3089.	1.3	25
437	A comparative evaluation of crashworthy composite sandwich structures. Composite Structures, 2007, 78, 34-44.	3.1	53
438	Experimental study and finite element analysis of the elastic instability of composite lattice structures for aeronautic applications. Composite Structures, 2007, 78, 519-528.	3.1	60
439	Electrodeposited carbon nanotubes as template for the preparation of semi-transparent conductive thin films by in situ polymerization of methyl methacrylate. Carbon, 2007, 45, 2685-2691.	5.4	20
440	Self-Assembly of Photoresponsive [2.2]Paracyclophane-Derivative Nanostripes on a Conducting Surface with Modified Wettability. Small, 2007, 3, 1200-1203.	5.2	19
441	Synthesis and characterization of epoxy resin-montmorillonite nanocomposites obtained by frontal polymerization. Journal of Polymer Science Part A, 2007, 45, 2204-2211.	2.5	63
442	Effect of magnetic nanoparticles on the thermal properties of some hydrogels. Polymer Degradation and Stability, 2007, 92, 2198-2205.	2.7	45
443	Selective interaction of single-walled carbon nanotubes with conducting dendrimer. Diamond and Related Materials, 2006, 15, 95-99.	1.8	16
444	Surface patterning of linearly functionalized [2.2]paracyclophanes by voltage assisted dewetting. Journal of Materials Chemistry, 2006, 16, 1622.	6.7	23
445	[2.2]Paracyclophanes incorporated within poly(3-butylthiophene): synthesis and photoelectrical properties. New Journal of Chemistry, 2006, 30, 939.	1.4	25
446	Dynamics in Polymerâ^'Silicate Nanocomposites As Studied by Dielectric Relaxation Spectroscopy and Dynamic Mechanical Spectroscopy. Macromolecules, 2006, 39, 2172-2182.	2.2	134
447	Uncovering regulator's (implicit) social welfare weights under price cap regulation. Economics Letters, 2006, 90, 1-5.	0.9	3
448	Modification of fluorinated single-walled carbon nanotubes with aminosilane molecules. Carbon, 2006, 44, 2196-2201.	5.4	61
449	Relationship between water absorption and dielectric behaviour of natural fibre composite materials. Polymer Testing, 2006, 25, 181-187.	2.3	82
450	Synthesis and characterization of sPS/montmorillonite nanocomposites. Journal of Applied Polymer Science, 2006, 100, 4957-4963.	1.3	19

#	Article	IF	CITATIONS
451	Mechanical Properties Evaluation of a Recycled Flax Fiber-reinforced Vinyl Ester. Journal of Composite Materials, 2006, 40, 245-256.	1.2	8
452	Enhancement of photoelectrical properties in polymer nanocomposites containing modified single-walled carbon nanotubes by conducting dendrimer. Journal of Applied Physics, 2006, 99, 114305.	1.1	14
453	A study of cosmic ray secondaries induced by the Mir space station using AMS-01. Nuclear Instruments & Methods in Physics Research B, 2005, 234, 321-332.	0.6	2
454	Cavitation wear behaviour of austenitic stainless steels with different grain sizes. Wear, 2005, 258, 503-510.	1.5	155
455	Interaction of oxygen with nanocomposites made of n-type conducting polymers and carbon nanotubes: role of charge transfer complex formation between nanotubes and poly(3-octylthiophene). Thin Solid Films, 2005, 476, 162-167.	0.8	9
456	Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon, 2005, 43, 1499-1505.	5.4	586
457	Sidewall functionalization of single-walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with aliphatic amines. Chemical Physics Letters, 2005, 403, 385-389.	1.2	92
458	Electrically switchable carbon nanotubes hydrophobic surfaces. Diamond and Related Materials, 2005, 14, 121-124.	1.8	14
459	Numerical modeling and experimental study of the frontal polymerization of the diglycidyl ether of bisphenol A/diethylenetriamine epoxy system. Journal of Applied Polymer Science, 2005, 96, 1756-1766.	1.3	45
460	Effects of storage aging on the cure kinetics of bismaleimide prepregs. Advances in Polymer Technology, 2005, 24, 253-265.	0.8	8
461	Novel approaches to developing carbon nanotube based polymer composites: fundamental studies and nanotech applications. Polymer, 2005, 46, 6715-6718.	1.8	39
462	Flax fiber surface modifications: Effects on fiber physico mechanical and flax/polypropylene interface properties. Polymer Composites, 2005, 26, 324-332.	2.3	126
463	Clustering, glass transition and gelation in a reactive fluid. Journal of Physics Condensed Matter, 2005, 17, S3557-S3563.	0.7	8
464	Chemical gating and photoconductivity of CF4 plasma-functionalized single-walled carbon nanotubes with adsorbed butylamine. Journal of Applied Physics, 2005, 97, 114320.	1.1	17
465	Soft-x-ray photoemission spectroscopy and ab initio studies on the adsorption of NO2 molecules on defective multiwalled carbon nanotubes. Journal of Chemical Physics, 2005, 123, 034702.	1.2	6
466	Clustering and Cooperative Dynamics in a Reactive System. Physical Review Letters, 2005, 94, 065702.	2.9	27
467	Structure–Properties Relationship of Short Jute Fiber-reinforced Polypropylene Composites. Journal of Composite Materials, 2005, 39, 51-65.	1.2	52
468	Influence of Twin-Screw Processing Conditions on the Mechanical Properties of Biocomposites. Journal of Composite Materials, 2005, 39, 2023-2038.	1.2	24

#	Article	IF	CITATIONS
469	Crystallization and Melting Behavior of Poly(3-butylthiophene), Poly(3-octylthiophene), and Poly(3-dodecylthiophene). Macromolecules, 2005, 38, 409-415.	2.2	155
470	Vacancy-Induced Chemisorption of NO2on Carbon Nanotubes:Â A Combined Theoretical and Experimental Study. Journal of Physical Chemistry B, 2005, 109, 13175-13179.	1.2	44
471	Characterization of Composites Based on Natural and Glass Fibers Obtained by Vacuum Infusion. Journal of Composite Materials, 2005, 39, 265-282.	1.2	98
472	A Review on Natural Fibre-Based Composites—Part II. Journal of Natural Fibers, 2005, 1, 23-65.	1.7	301
473	Adsorption of oxidizing gases on multiwalled carbon nanotubes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1450-1454.	0.9	15
474	Effect of Chemical Treatment on the Mechanical Properties of Starch-Based Blends Reinforced with Sisal Fibre. Journal of Composite Materials, 2004, 38, 1387-1399.	1.2	99
475	Wear Resistance of Fine-Grained High Nitrogen Austenitic Stainless Steel Coated with Amorphous Carbon Films: The Soft X-ray Spectroscopy Approach. Tribology Letters, 2004, 16, 51-58.	1.2	3
476	Influence of atmospheric humidity and grain size on the friction and wear of high nitrogen austenitic stainless steel. Journal of Materials Science, 2004, 39, 1481-1484.	1.7	3
477	Rheology of particle suspensions in viscoelastic media. Wood flour-polypropylene melt. Rheologica Acta, 2004, 43, 293-303.	1.1	76
478	Interaction of methane with carbon nanotube thin films: role of defects and oxygen adsorption. Materials Science and Engineering C, 2004, 24, 527-533.	3.8	45
479	Friction and Wear Behavior of Austenitic Stainless Steel: Influence of Atmospheric Humidity, Load Range, and Grain Size. Tribology Letters, 2004, 17, 697-704.	1.2	28
480	Carbon nanotubes as new materials for gas sensing applications. Journal of the European Ceramic Society, 2004, 24, 1405-1408.	2.8	125
481	Dielectric behavior of epoxy matrix/single-walled carbon nanotube composites. Composites Science and Technology, 2004, 64, 23-33.	3.8	81
482	Mechanical properties of polypropylene matrix composites reinforced with natural fibers: A statistical approach. Polymer Composites, 2004, 25, 26-36.	2.3	74
483	Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends. Polymer Composites, 2004, 25, 280-288.	2.3	55
484	A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polymer Composites, 2004, 25, 470-479.	2.3	115
485	Effects of carbon nanotubes on the crystallization behavior of polypropylene. Polymer Engineering and Science, 2004, 44, 303-311.	1.5	102
486	Cure characteristics, mechanical properties, and morphological studies of linoleum flour-filled NBR compounds. Polymer Engineering and Science, 2004, 44, 909-916.	1.5	12

#	Article	IF	CITATIONS
487	Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polymer Engineering and Science, 2004, 44, 1907-1914.	1.5	47
488	Cure kinetics of epoxy/anhydride nanocomposite systems with added reactive flame retardants. Journal of Applied Polymer Science, 2004, 94, 1676-1689.	1.3	19
489	Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber. Journal of Applied Polymer Science, 2004, 92, 3394-3400.	1.3	134
490	A deeper understanding of the photodesorption mechanism of aligned carbon nanotube thin films by impedance spectroscopy. Thin Solid Films, 2004, 449, 105-112.	0.8	17
491	Effects of oxygen annealing on cross sensitivity of carbon nanotubes thin films for gas sensing applications. Sensors and Actuators B: Chemical, 2004, 100, 33-40.	4.0	38
492	Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material. Chemical Physics Letters, 2004, 383, 617-622.	1.2	132
493	Role of defects on the gas sensing properties of carbon nanotubes thin films: experiment and theory. Chemical Physics Letters, 2004, 387, 356-361.	1.2	121
494	Synthesis and electrical properties of CdS Langmuir–Blodgett multilayers nanoparticles on self-assembled carbon nanotubes. Chemical Physics Letters, 2004, 392, 214-219.	1.2	8
495	Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy. Carbon, 2004, 42, 323-329.	5.4	72
496	Ozone adsorption on carbon nanotubes:Ab initiocalculations and experiments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1466-1470.	0.9	40
497	AC conductivity of conjugated polymer onto self-assembled aligned carbon nanotubes. Diamond and Related Materials, 2004, 13, 250-255.	1.8	13
498	A Review on Natural Fibre-Based Composites-Part I. Journal of Natural Fibers, 2004, 1, 37-68.	1.7	298
499	Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond and Related Materials, 2004, 13, 1301-1305.	1.8	146
500	Controllable fabrication of aligned carbon nanotubes by pulsed plasma: selective positioning and electrical transport phenomena. Materials Letters, 2004, 58, 470-473.	1.3	10
501	SÃntesis y caracterización de composites de TPOS reforzados con nanotubos de carbono. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 527-531.	0.9	1
502	High temperature resistance of a high nitrogen and low nickel austenitic stainless steel. Journal of Materials Science Letters, 2003, 22, 691-693.	0.5	17
503	Title is missing!. Journal of Materials Science Letters, 2003, 22, 981-983.	0.5	14
504	Title is missing!. Journal of Materials Science, 2003, 38, 3257-3262.	1.7	43

#	Article	IF	CITATIONS
505	Fatigue behavior of a high nitrogen austenitic stainless steel as a function of its grain size. Journal of Materials Science Letters, 2003, 22, 1511-1513.	0.5	27
506	Effects of grain size on the properties of a low nickel austenitic stainless steel. Journal of Materials Science, 2003, 38, 4725-4733.	1.7	84
507	NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory. Journal of Chemical Physics, 2003, 119, 10904-10910.	1.2	221
508	Effects of single-walled carbon nanotubes on the crystallization behavior of polypropylene. Journal of Applied Polymer Science, 2003, 87, 708-713.	1.3	128
509	Mechanical characterization of polypropylene-wood flour composites. Journal of Applied Polymer Science, 2003, 88, 1420-1428.	1.3	128
510	Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. Journal of Applied Polymer Science, 2003, 88, 452-458.	1.3	137
511	Isothermal crystallization of poly(vinyl alcohol-co-ethylene). Journal of Applied Polymer Science, 2003, 89, 1071-1077.	1.3	13
512	Physical and mechanical behavior of single-walled carbon nanotube/polypropylene/ethylene-propylene-diene rubber nanocomposites. Journal of Applied Polymer Science, 2003, 89, 2657-2663.	1.3	132
513	Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer. Journal of Applied Polymer Science, 2003, 90, 2170-2178.	1.3	96
514	Curing kinetics and chemorheology of epoxy/anhydride system. Journal of Applied Polymer Science, 2003, 90, 3012-3019.	1.3	96
515	Processing and characterization of epoxy-anhydride-based intercalated nanocomposites. Journal of Applied Polymer Science, 2003, 90, 2532-2539.	1.3	39
516	Spectroscopic analysis of the structure of amorphous nitrogenated carbon films after wear tests. Thin Solid Films, 2003, 423, 108-114.	0.8	2
517	Thermal degradation of recycled polypropylene toughened with elastomers. Polymer Degradation and Stability, 2003, 82, 279-290.	2.7	52
518	Morphological characterization of single-walled carbon nanotubes-PP composites. Composites Science and Technology, 2003, 63, 1149-1153.	3.8	200
519	NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Sensors and Actuators B: Chemical, 2003, 93, 333-337.	4.0	164
520	Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD. Sensors and Actuators B: Chemical, 2003, 95, 195-202.	4.0	130
521	Reversible oxidation effects on carbon nanotubes thin films for gas sensing applications. Materials Science and Engineering C, 2003, 23, 523-529.	3.8	83
522	Processing, properties and stability of biodegradable composites based on Mater-Bi® and cellulose fibres. Polymers for Advanced Technologies, 2003, 14, 749-756.	1.6	68

#	Article	IF	CITATIONS
523	Ternary composites based on PP-EPDM blends reinforced with flax fibers. Part I: Processing and thermal behavior. Polymer Engineering and Science, 2003, 43, 1018-1030.	1.5	12
524	Ternary composites based on PP-EPDM blends reinforced with flax fibers. Part II: Mechanical properties/morphology relationship. Polymer Engineering and Science, 2003, 43, 1031-1043.	1.5	14
525	Effects of oxygen annealing on gas sensing properties of carbon nanotube thin films. Thin Solid Films, 2003, 436, 95-100.	0.8	72
526	Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy. Diamond and Related Materials, 2003, 12, 827-832.	1.8	118
527	Effect of catalyst layer thickness and Ar dilution on the plasma deposition of multi-walled carbon nanotubes. Diamond and Related Materials, 2003, 12, 821-826.	1.8	12
528	Frequency dependent electrical transport between conjugated polymer and single-walled carbon nanotubes. Diamond and Related Materials, 2003, 12, 1601-1609.	1.8	34
529	Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Applied Physics Letters, 2003, 82, 961-963.	1.5	480
530	Light Scattering Study of Vitrification during the Polymerization of Model Epoxy Resins. Macromolecules, 2003, 36, 5271-5278.	2.2	25
531	Electrical transport properties of conjugated polymer onto self-assembled aligned carbon nanotubes. Diamond and Related Materials, 2003, 12, 1524-1531.	1.8	11
532	Effects of fluorine incorporation on the properties of amorphous carbon/p-type crystalline silicon heterojunction diodes. Journal of Non-Crystalline Solids, 2003, 321, 175-182.	1.5	19
533	Wear resistance of a high nitrogen austenitic stainless steel coated with amorphous carbon films: influence of grain size and film composition. Materials Letters, 2003, 57, 1281-1287.	1.3	1
534	Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel. Materials Letters, 2003, 57, 1830-1834.	1.3	104
535	Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Materials Letters, 2003, 57, 3182-3185.	1.3	95
536	Pulsed plasma-induced alignment of carbon nanotubes. Materials Letters, 2003, 57, 3699-3704.	1.3	14
537	The influence of atmospheric humidity and grain size on the friction and wear of AISI 304 austenitic stainless steel. Materials Letters, 2003, 57, 4505-4508.	1.3	36
538	The Effect of Grain Size on the Mechanical and Cavitation Resistance of a High Nitrogen and Low Nickel Austenitic Stainless Steel. Materials Science Forum, 2003, 426-432, 975-980.	0.3	4
539	Modelling Primary Recrystallization and Grain Growth in the AISI 316 Stainless Steel. Materials Science Forum, 2003, 426-432, 1011-1016.	0.3	3
540	Fluorinated amorphous carbon thin films: Analysis of the role of the plasma excitation mode on the structural and mechanical properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1964-1970.	0.9	5

#	Article	IF	CITATIONS
541	Effect of thermal annealing on the electronic properties of nitrogen doped amorphous carbon/p-type crystalline silicon heterojunction diodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 582-588.	0.9	7
542	Fluorinated amorphous carbon films prepared by plasma enhanced chemical vapor deposition for solar cell applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1784-1790.	0.9	5
543	Processing and properties of recycled polypropylene modified with elastomers. Plastics, Rubber and Composites, 2003, 32, 357-367.	0.9	13
544	Investigation of the NO[sub 2] sensitivity properties of multiwalled carbon nanotubes prepared by plasma enhanced chemical vapor deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1996.	1.6	34
545	Cavitation Erosion and Friction Behavior of Stainless Steel as a Function of Grain Size. Materials Research Society Symposia Proceedings, 2003, 782, 1.	0.1	0
546	Helium permeation througha-C:H films deposited on polymeric substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1647-1652.	0.9	9
547	Formation of carbon nanotubes by plasma enhanced chemical vapor deposition: Role of nitrogen and catalyst layer thickness. Journal of Applied Physics, 2002, 92, 6188-6194.	1.1	50
548	Comparative Study of the Effects of Different Fibers on the Processing and Properties of Polypropylene Matrix Composites. Journal of Thermoplastic Composite Materials, 2002, 15, 337-353.	2.6	20
549	Pulsed PECVD deposition of diamond-like carbon films. Diamond and Related Materials, 2002, 11, 1047-1052.	1.8	54
550	Hydrogen concentrations and mass density obtained by X-ray and neutron reflectivity on hydrogenated amorphous carbon nitride thin films. Diamond and Related Materials, 2002, 11, 1188-1192.	1.8	5
551	Analysis of the role of fluorine content on the thermal stability of a-C:H:F thin films. Diamond and Related Materials, 2002, 11, 1100-1105.	1.8	5
552	Influence of nitrogen and temperature on the plasma deposition of fluorinated amorphous carbon films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1210-1215.	0.9	5
553	Analysis of the effects of the polymerization route of ethylene-propylene-diene rubbers (EPDM) on the properties of polypropylene-EPDM blends. Journal of Applied Polymer Science, 2002, 85, 25-37.	1.3	5
554	Ar dilution effects on hydrogen concentration and mass density obtained by X-ray and neutron reflectivity on hydrogenated amorphous nitride thin films. Applied Physics A: Materials Science and Processing, 2002, 74, s1104-s1106.	1.1	1
555	Structural changes of fluorinated amorphous carbon films by nitrogen incorporation. Materials Science in Semiconductor Processing, 2002, 5, 271-277.	1.9	2
556	The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part I – results from the test flight on the space shuttle. Physics Reports, 2002, 366, 331-405.	10.3	366
557	Thermokinetic effect of the aging of epoxy matrix prepregs for high performance composites. Polymer Composites, 2002, 23, 530-537.	2.3	16
558	Comparative study of the effects of different fibers on the processing and properties of ternary composites based on PP-EPDM blends. Polymer Composites, 2002, 23, 779-789.	2.3	42

#	Article	IF	CITATIONS
559	Thermal and dynamic mechanical characterization of polypropylene-woodflour composites. Polymer Engineering and Science, 2002, 42, 733-742.	1.5	106
560	Nitrogen doping of fluorinated amorphous carbon thin films: structural and optical properties evolution upon thermal annealing. Thin Solid Films, 2002, 408, 291-296.	0.8	8
561	Structural and optical properties of nitrogen and oxygen doped a-C:H coatings. Thin Solid Films, 2002, 415, 195-200.	0.8	10
562	Wear resistance of a high-nitrogen austenitic stainless steel coated with nitrogenated amorphous carbon films. Surface and Coatings Technology, 2002, 161, 224-231.	2.2	22
563	Influence of grain size and film composition on wear resistance of ultra fine grained AISI 304 stainless steel coated with amorphous carbon films. Wear, 2002, 253, 458-464.	1.5	16
564	Development of ultra fine grain structure by martensitic reversion in stainless steel. Journal of Materials Science Letters, 2002, 21, 751-753.	0.5	90
565	Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels. Journal of Materials Science Letters, 2002, 21, 1631-1634.	0.5	105
566	Title is missing!. Journal of Materials Science, 2002, 37, 4561-4565.	1.7	144
567	Analysis of the recrystallization and grain growth processes in AISI 316 stainless steel. Journal of Materials Science, 2002, 37, 5291-5298.	1.7	31
568	Title is missing!. Journal of Materials Science Letters, 2002, 21, 1969-1971.	0.5	56
569	Comparison of diamond-like carbon films synthesized by 2.45 GHz microwave and 13.56 MHz multi-jet radiofrequency plasma sources. Diamond and Related Materials, 2001, 10, 920-926.	1.8	13
570	Influence of plasma source frequency on composition and density of fluorinated amorphous carbon thin films. Materials Letters, 2001, 51, 514-518.	1.3	10
571	Relationship between the optical and mechanical properties of fluorinated amorphous carbon thin films. Journal of Non-Crystalline Solids, 2001, 291, 153-159.	1.5	20
572	Structure and mechanical properties of argon assisted carbon nitride films. Thin Solid Films, 2001, 398-399, 124-129.	0.8	12
573	Ar-dilution effects on the elastic and structural properties of hydrogenated hard carbon films deposited by plasma-enhanced chemical vapor deposition. Diamond and Related Materials, 2001, 10, 1088-1092.	1.8	25
574	Effect of nitrogen addition on the elastic and structural properties of amorphous carbon thin films. Thin Solid Films, 2001, 389, 315-320.	0.8	16
575	Thermal degradation of poly(vinyl chloride) plastisols based on low-migration polymeric plasticizers. Polymer Degradation and Stability, 2001, 73, 447-453.	2.7	46
576	Thermal degradation and fire resistance of epoxy–amine–phenolic blends. Polymer Degradation and Stability, 2001, 73, 521-527.	2.7	44

#	Article	IF	CITATIONS
577	Relationship between processing and properties of biodegradable composites based on PCL/starch matrix and sisal fibers. Polymer Composites, 2001, 22, 104-110.	2.3	91
578	Crystallization kinetics by differential scanning calorimetry for PCL/starch and their reinforced sisal fiber composites. Polymer Engineering and Science, 2001, 41, 1521-1528.	1.5	33
579	Rheological behavior and processability of polypropylene blends with rubber ethylene propylene diene terpolymer. Journal of Applied Polymer Science, 2001, 81, 1-10.	1.3	44
580	Kinetic crystallization of polypropylene in ternary composites based on fiber-reinforced PP-EPDM blends. Journal of Applied Polymer Science, 2001, 81, 1063-1074.	1.3	10
581	Formulation and mechanical characterization of PVC plastisols based on low-toxicity additives. Journal of Applied Polymer Science, 2001, 81, 1881-1890.	1.3	39
582	Temperature and crystallinity profiles generated in a polycaprolactone/starch blend under different cooling conditions. Journal of Applied Polymer Science, 2001, 82, 3275-3283.	1.3	7
583	Effect of Grafted PP on the Properties of Thermoplastic Elastomers Based on PP-EPDM Blends. Macromolecular Chemistry and Physics, 2001, 202, 1909-1916.	1.1	14
584	Deposition of hydrogenated amorphous carbon films from CH4/Ar plasmas: Ar dilution effects. Journal of Materials Science, 2001, 36, 5295-5300.	1.7	13
585	Modelling primary recrystallization and grain growth in a low nickel austenitic stainless steel. Journal of Materials Science, 2001, 36, 593-601.	1.7	27
586	Use of Benzene-1,3-Bis(Sulfonyl)Azide as Crosslinking Agent of TPVs Based on EPDM Rubber—Polyolefin Blends. Rubber Chemistry and Technology, 2001, 74, 198-210.	0.6	14
587	New Developments in Dynamically Cured PP—EPDM Blends. Rubber Chemistry and Technology, 2001, 74, 211-220.	0.6	26
588	Ar dilution effects on the elastic properties of hydrogenated amorphous hard-carbon films grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2001, 89, 1003-1007.	1.1	9
589	Structural, morphological, and mechanical properties of plasma deposited hydrogenated amorphous carbon thin films: Ar gas dilution effects. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1611-1616.	0.9	17
590	Fluorinated amorphous carbon thin films: Analysis of the role of the plasma source frequency on the structural and optical properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2168-2173.	0.9	16
591	Thermal stability of P(HB-co-HV) and its blends with polyalcohols. Journal of Applied Polymer Science, 2000, 77, 2889-2900.	1.3	21
592	Processability and mechanical properties of ternary composites PP/EPDM/GF. Polymer Composites, 2000, 21, 377-386.	2.3	15
593	Processing of short-fiber reinforced polypropylene. I. Influence of processing conditions on the morphology of extruded filaments. Polymer Engineering and Science, 2000, 40, 11-22.	1.5	29
594	Effects of reinforcing fibers on the crystallization of polypropylene. Polymer Engineering and Science, 2000, 40, 2194-2204.	1.5	83

#	Article	IF	CITATIONS
595	Leptons in near earth orbit. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 484, 10-22.	1.5	224
596	Cosmic protons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 490, 27-35.	1.5	242
597	Helium in near Earth orbit. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 494, 193-202.	1.5	145
598	Impact testing and simulation of composite sandwich structures for civil transportation. Composite Structures, 2000, 50, 257-267.	3.1	108
599	Solidification mode and residual ferrite in low-Ni austenitic stainless steels. Journal of Materials Science, 2000, 35, 375-380.	1.7	72
600	Title is missing!. Journal of Materials Science, 2000, 35, 4563-4566.	1.7	62
601	Development of high nitrogen, low nickel, 18%Cr austenitic stainless steels. Journal of Materials Science, 2000, 35, 4803-4808.	1.7	66
602	Kinetic Modeling of the Thermal Degradation of Stabilized PVC Plastisols. Magyar Apróvad Közlemények, 2000, 61, 483-491.	1.4	27
603	Polypropylene Crystallization in an Ethylene-propylene-diene Rubber Matrix. Magyar Apróvad Közlemények, 2000, 61, 437-450.	1.4	23
604	Title is missing!. Magyar Apróvad Közlemények, 2000, 61, 565-578.	1.4	3
605	Analysis of the Ductility on Short Fiber Reinforced Polypropylene Plates. Journal of Elastomers and Plastics, 2000, 32, 302-310.	0.7	1
606	Analysis of the Relationship between Processing Conditions-Fiber Orientation-Final Properties in Short Fiber Reinforced Polypropylene. Journal of Reinforced Plastics and Composites, 1999, 18, 413-420.	1.6	30
607	Processing and properties of resol and epoxy blends for resin transfer molding. Polymer Composites, 1999, 20, 675-682.	2.3	10
608	Processing of short fiber reinforced polypropylene. II: Statistical study of the effects of processing conditions on the impact strength. Polymer Engineering and Science, 1999, 39, 1880-1890.	1.5	15
609	Kinetic analysis of the thermal degradation of PVC plastisols. Journal of Applied Polymer Science, 1999, 73, 1069-1079.	1.3	35
610	Processing, properties and morphology of polypropyleneâ€epdm blends. Macromolecular Symposia, 1999, 148, 345-360.	0.4	11
611	Processing–structure–adhesion relationship in CVD diamond films on titanium substrates. Diamond and Related Materials, 1999, 8, 17-24.	1.8	38
612	Radiation effects on room temperature epoxy adhesive molecular structure: Mechanical tests and correlation with calorimetric and outgassing analyses. Journal of Macromolecular Science - Physics, 1999. 38. 623-633.	0.4	8

#	Article	IF	CITATIONS
613	Bagasse Fiber-Polypropylene Based Composites. Journal of Thermoplastic Composite Materials, 1999, 12, 477-497.	2.6	105
614	Degradation behaviour of a composite material for thermal protection systemsPart II Process simulation. Journal of Materials Science, 1998, 33, 3145-3149.	1.7	56
615	Degradation behaviour of a composite material for thermal protection systems Part l–Experimental characterization. Journal of Materials Science, 1998, 33, 3137-3143.	1.7	132
616	Comparative study by DSC and FTIR techniques of an unsaturated polyester resin cured at different temperatures. Polymer International, 1998, 45, 333-338.	1.6	36
617	Determination of the crystallization enthalpy of new-TPI. Journal of Applied Polymer Science, 1998, 67, 763-766.	1.3	4
618	Processing of short fibre/thermosetting matrix composites. Composites Part A: Applied Science and Manufacturing, 1996, 27, 229-240.	3.8	25
619	In situ real-time monitoring of epoxy/amine kinetics by remote near infrared spectroscopy. Polymers for Advanced Technologies, 1996, 7, 1-16.	1.6	75
620	Cure kinetics of neat and carbon-fiber-reinforced TGDDM/DDS epoxy systems. Journal of Applied Polymer Science, 1996, 61, 1025-1037.	1.3	99
621	Analysis of pultrusion processing of composites of unsaturated polyester resin with glass fibers. Polymer Composites, 1996, 17, 478-485.	2.3	28
622	A macrokinetic approach to crystallization applied to a new thermoplastic polyimide (New TPI) as a model polymer. Journal of Applied Polymer Science, 1995, 56, 985-993.	1.3	27
623	Impedance spectroscopy of reactive polymers. 2. Multifunctional epoxy/amine formulations. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 433-443.	2.4	24
624	Elasto-plastic behavior of thermoplastic composite laminates under cyclic loading. Composite Structures, 1995, 32, 375-382.	3.1	31
625	Calorimetric analysis of the polymerization reaction of a phenolic resin. Thermochimica Acta, 1995, 269-270, 201-211.	1.2	38
626	On the physical dimensions of the Avrami constant. Thermochimica Acta, 1995, 269-270, 185-190.	1.2	30
627	Rheology of thermoplastic matrix short glass fiber composites. Journal of Vinyl and Additive Technology, 1995, 1, 269-272.	1.8	6
628	Chemorheological Fundamental Aspects of the SMC Process. Science and Engineering of Composite Materials, 1995, 4, .	0.6	0
629	Functionalization of Wood Waste and Its Use in Polyester Type Composite. A Preliminary Study. Journal of Polymer Engineering, 1995, 14, .	0.6	7
630	Degradation Kinetics of High-Performance Polymers and Their Composites. ACS Symposium Series, 1995, , 140-154.	0.5	5

JOSé MARÃA KENNY

#	Article	IF	CITATIONS
631	Correlation between dielectric and chemorheological properties during cure of epoxy-based composites. Journal of Materials Science, 1994, 29, 800-808.	1.7	49
632	Principal features of structural relaxation in glassy polymers. A Review. Polymer Engineering and Science, 1994, 34, 381-389.	1.5	53
633	Impedance spectroscopy of reactive polymers. 1. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2519-2527.	2.4	48
634	Determination of autocatalytic kinetic model parameters describing thermoset cure. Journal of Applied Polymer Science, 1994, 51, 761-764.	1.3	132
635	Rheology of short-fiber composites: A systematic approach. Composite Structures, 1994, 27, 83-91.	3.1	18
636	Application of modeling to the control and optimization of composites processing. Composite Structures, 1994, 27, 129-139.	3.1	22
637	The principles of dielectric measurements for in situ monitoring of composite processing. Composites Science and Technology, 1993, 49, 277-290.	3.8	150
638	A new kinetic model for polymer crystallization derived by calorimetric analysis. Thermochimica Acta, 1993, 227, 83-95.	1.2	29
639	Short- and long-term degradation of polymer-based composites. Thermochimica Acta, 1993, 227, 97-106.	1.2	8
640	Comparison of kinetic and rheological evaluation of gel time for an amine-epoxy system. Polymer, 1993, 34, 207-209.	1.8	28
641	A macrokinetic approach to crystallization modelling of semicrystalline thermoplastic matrices for advanced composites. Journal of Materials Science, 1993, 28, 4994-5001.	1.7	23
642	Thermal Characterization of the Cure Kinetics of Advanced Matrices for High-Performance Composites. Advances in Chemistry Series, 1993, , 539-557.	0.6	2
643	Influence of the chemorheology of toughened epoxy matrices on the processing behavior of high performance composites. Makromolekulare Chemie Macromolecular Symposia, 1993, 68, 41-56.	0.6	21
644	Science and Technology of Polymer Composites. , 1993, , 321-357.		0
645	Cure kinetics of dicyanate matrix polymers. Polymer Composites, 1992, 13, 191-196.	2.3	10
646	Blends of semicrystalline and amorphous polymeric matrices for high performance composites. Polymer Composites, 1992, 13, 380-385.	2.3	14
647	Modeling of the dynamic mechanical properties of semicrystalline thermoplastic matrix composites. Polymer Composites, 1992, 13, 386-393.	2.3	12

#	Article	IF	CITATIONS
649	Thermal analysis of standard and toughened high-performance epoxy matrices. Thermochimica Acta, 1992, 199, 213-227.	1.2	10
650	CHEMORHEOLOGY AND CURING KINETICS OF TOUGHENED EPOXY MATRICES FOR HIGH PERFORMANCE COMPOSITES. , 1992, , 868-870.		0
651	Integration of Processing Models with Control and Optimization of Polymer Composites Fabrication. , 1992, , 529-544.		1
652	The effects of surface treatments of fibers on the interfacial properties in single-fiber composites. Journal of Adhesion Science and Technology, 1991, 5, 377-388.	1.4	21
653	Effect of water absorption on the behavior of E-glass fiber/nylon-6 composites. Polymer Composites, 1991, 12, 333-337.	2.3	33
654	Crystallization kinetics of poly(phenylene sulfide) (PPS) and PPS/carbon fiber composites. Polymer Engineering and Science, 1991, 31, 607-614.	1.5	74
655	Isothermal and dynamic reaction kinetics of high performance epoxy matrices. Polymer Engineering and Science, 1991, 31, 1426-1433.	1.5	68
656	Dynamic-mechanical and dielectric characterization of PEEK crystallization. Polymer Engineering and Science, 1990, 30, 314-320.	1.5	44
657	Interface morphology of carbon fibre/PEEK composites. Journal of Materials Science, 1990, 25, 3493-3496.	1.7	47
658	Mathematical modeling of the pultrusion of epoxy based composites. Advances in Polymer Technology, 1990, 10, 251-264.	0.8	21
659	A model for the thermal and chemorheological behavior of thermoset processing: (II) Unsaturated polyester based composites. Composites Science and Technology, 1990, 38, 339-358.	3.8	102
660	Science and Technology of Polymer Composites. , 1989, , 471-525.		3
661	Water sorption kinetics in poly(aryl ether ether ketone). Journal of Applied Polymer Science, 1989, 37, 381-392.	1.3	32
662	A model for the thermal and chemorheological behavior of thermosets. I: Processing of epoxy-based composites. Polymer Engineering and Science, 1989, 29, 973-983.	1.5	85
663	USA-Italy Joint Workshop on Composite Materials: Processing Science and Technology of Polymeric Matrix Composites Capri, Italy, 6–10 June 1988. Composites, 1989, 20, 89-90.	0.9	Ο
664	Thermal and chemorheological modelling of the processing of advanced epoxy based composites. Makromolekulare Chemie Macromolecular Symposia, 1989, 25, 45-54.	0.6	3
665	Viscoelastic Characterization of Reinforced Polyester Foams. Journal of Cellular Plastics, 1988, 24, 473-485.	1.2	4
666	THE STEFAN AND DEBORAH NUMBERS IN POLYMER CRYSTALLIZATION. Chemical Engineering Communications, 1987, 53, 69-84.	1.5	29

#	Article	IF	CITATIONS
667	An innovative approach to gas sensing using carbon nanotubes thin films: sensitivity, selectivity and stability response analysis. , 0, , .		4
668	Ozone reactivity with carbon nanotubes: experimental and theoretical studies. , 0, , .		2
669	Cabon nanotubes gas sensors: current status and future prospescts. , 0, , .		0
670	Variation On The Properties Of Silver Nanoparticles Nanocomposites Based On SIS And SBS Block Copolymer. , 0, , 295-302.		0