Oscar SolÃ-s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6360404/publications.pdf

Version: 2024-02-01

Ος του Ας

#	Article	IF	CITATIONS
1	Time will tell. Reply to "Comments to pharmacological and behavioral divergence of ketamine enantiomers by Jordi Bonaventura et al.―by Chen et al Molecular Psychiatry, 2022, 27, 1863-1865.	4.1	3
2	Dopamine D2R is Required for Hippocampal-dependent Memory and Plasticity at the CA3-CA1 Synapse. Cerebral Cortex, 2021, 31, 2187-2204.	1.6	29
3	Behavioral sensitization and cellular responses to psychostimulants are reduced in D2R knockout mice. Addiction Biology, 2021, 26, e12840.	1.4	14
4	Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Molecular Psychiatry, 2021, 26, 6704-6722.	4.1	139
5	Dopamine <scp>D1</scp> Receptors Regulate Spines in Striatal <scp>Directâ€Pathway</scp> and <scp>Indirectâ€Pathway</scp> Neurons. Movement Disorders, 2020, 35, 1810-1821.	2.2	24
6	Optostimulation of striatonigral terminals in substantia nigra induces dyskinesia that increases after Lâ€DOPA in a mouse model of Parkinson's disease. British Journal of Pharmacology, 2019, 176, 2146-2161.	2.7	34
7	Genetic Knockdown of mGluR5 in Striatal D1R-Containing Neurons Attenuates l-DOPA-Induced Dyskinesia in Aphakia Mice. Molecular Neurobiology, 2019, 56, 4037-4050.	1.9	13
8	Dopamine receptors: homomeric and heteromeric complexes in l-DOPA-induced dyskinesia. Journal of Neural Transmission, 2018, 125, 1187-1194.	1.4	19
9	Genetic enhancement of Ras-ERK pathway does not aggravate L-DOPA-induced dyskinesia in mice but prevents the decrease induced by lovastatin. Scientific Reports, 2018, 8, 15381.	1.6	11
10	Dopamine D3 Receptor Modulates l-DOPA-Induced Dyskinesia by Targeting D1 Receptor-Mediated Striatal Signaling. Cerebral Cortex, 2017, 27, bhv231.	1.6	70
11	Human COMT over-expression confers a heightened susceptibility to dyskinesia in mice. Neurobiology of Disease, 2017, 102, 133-139.	2.1	21
12	Morphological Plasticity in the Striatum Associated With Dopamine Dysfunction. Handbook of Behavioral Neuroscience, 2016, , 755-770.	0.7	4
13	L-DOPA Oppositely Regulates Synaptic Strength and Spine Morphology in D1 and D2 Striatal Projection Neurons in Dyskinesia. Cerebral Cortex, 2016, 26, 4253-4264.	1.6	102
14	L-DOPA Reverses the Increased Free Amino Acids Tissue Levels Induced by Dopamine Depletion and Rises GABA and Tyrosine in the Striatum. Neurotoxicity Research, 2016, 30, 67-75.	1.3	23
15	Role of Nurr1 in the Generation and Differentiation of Dopaminergic Neurons from Stem Cells. Neurotoxicity Research, 2016, 30, 14-31.	1.3	20
16	Nurr1 blocks the mitogenic effect of <scp>FGF</scp> â€2 and <scp>EGF</scp> , inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergicâ€ <scp>GABA</scp> ergic neuronal phenotypes. Developmental Neurobiology, 2015, 75, 823-841.	1.5	26
17	Dendritic morphology changes in neurons from the ventral hippocampus, amygdala and nucleus accumbens in rats with neonatal lesions into the prefrontal cortex. Synapse, 2015, 69, 314-325.	0.6	13
18	Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3â^'/â^' aphakia mice. Neurobiology of Disease, 2015, 73, 49-59.	2.1	64

OSCAR SOLÃS

#	Article	IF	CITATIONS
19	L-DOPA Treatment Selectively Restores Spine Density in Dopamine Receptor D2–Expressing Projection Neurons in Dyskinetic Mice. Biological Psychiatry, 2014, 75, 711-722.	0.7	155
20	Unilateral injection of Aβ _{25–35} in the hippocampus reduces the number of dendritic spines in hyperglycemic rats. Synapse, 2014, 68, 585-594.	0.6	23
21	Dendritic morphology changes in neurons from the prefrontal cortex, hippocampus and nucleus accumbens in rats after lesion of the thalamic reticular nucleus. Neuroscience, 2012, 223, 429-438.	1.1	35
22	Dendritic morphology of neurons in prefrontal cortex and ventral hippocampus of rats with neonatal amygdala lesion. Synapse, 2012, 66, 373-382.	0.6	9
23	Enhanced dendritic spine number of neurons of the prefrontal cortex, hippocampus, and nucleus accumbens in old rats after chronic donepezil administration. Synapse, 2010, 64, 786-793.	0.6	39
24	Decreased dendritic spine density of neurons of the prefrontal cortex and nucleus accumbens and enhanced amphetamine sensitivity in postpubertal rats after a neonatal amygdala lesion. Synapse, 2009, 63, 1143-1153.	0.6	32
25	Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6-OHDA-rat model of Parkinson's disease. Synapse, 2007, 61, 450-458.	0.6	81
26	The show must go on. Reply to "Distinct functions of S-ketamine and R-ketamine in mediating biobehavioral processes of drug dependency: comments on Bonaventura et al―by Insop Shim. Molecular Psychiatry, 0, , .	4.1	0