Wenru Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6360398/publications.pdf Version: 2024-02-01

WENDILLI

#	Article	IF	CITATIONS
1	High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures. Bioresource Technology, 2017, 231, 45-52.	9.6	98
2	Novel insights into Anammox-based processes: A critical review. Chemical Engineering Journal, 2022, 444, 136534.	12.7	73
3	Fast start-up of the cold-anammox process with different inoculums at low temperature (13â€ ⁻ ºC) in innovative reactor. Bioresource Technology, 2018, 267, 696-703.	9.6	50
4	Enhancement of nitrite production via addition of hydroxylamine to partial denitrification (PD) biomass: Functional genes dynamics and enzymatic activities. Bioresource Technology, 2020, 318, 124274.	9.6	40
5	Microbial community response to influent shift and lowering temperature in a two-stage mainstream deammonification process. Bioresource Technology, 2018, 262, 132-140.	9.6	35
6	Hydroxylamine metabolism in mainstream denitrifying ammonium oxidation (DEAMOX) process: Achieving fast start-up and robust operation with bio-augmentation assistance under ambient temperature. Journal of Hazardous Materials, 2022, 421, 126736.	12.4	34
7	Characterization of the start-up of single and two-stage Anammox processes with real low-strength wastewater treatment. Chemosphere, 2020, 245, 125572.	8.2	30
8	Development of a novel denitrifying phosphorus removal and partial denitrification anammox (DPRÂ+ÂPDA) process for advanced nitrogen and phosphorus removal from domestic and nitrate wastewaters. Bioresource Technology, 2021, 327, 124795.	9.6	30
9	Feasibility of applying intermittent aeration and baffles for achieving granular nitritation in a continuous short-cut denitrifying phosphorus removal system. Science of the Total Environment, 2020, 715, 137023.	8.0	28
10	Functional and compositional characteristics of nitrifiers reveal the failure of achieving mainstream nitritation under limited oxygen or ammonia conditions. Bioresource Technology, 2019, 275, 272-279.	9.6	26
11	A novel denitrifying phosphorus removal and partial nitriffation, anammox (DPR-PNA) process for advanced nutrients removal from high-strength wastewater. Chemosphere, 2021, 265, 129165.	8.2	24
12	Two-stage partial nitritation-anammox process for high-rate mainstream deammonification. Applied Microbiology and Biotechnology, 2018, 102, 8079-8091.	3.6	23
13	Single-stage autotrophic nitrogen removal process at high loading rate: granular reactor performance, kinetics, and microbial characterization. Applied Microbiology and Biotechnology, 2018, 102, 2379-2389.	3.6	20
14	A novel anammox reactor with a nitrogen gas circulation: performance, granule size, activity, and microbial community. Environmental Science and Pollution Research, 2020, 27, 18661-18671.	5.3	20
15	Cultivation and characteristics of partial nitrification granular sludge in a sequencing batch reactor inoculated with heterotrophic granules. Applied Microbiology and Biotechnology, 2016, 100, 9381-9391.	3.6	18
16	Enhancing the in-situ enrichment of anammox bacteria in aerobic granules to achieve high-rate CANON at low temperatures. Chemosphere, 2021, 278, 130395.	8.2	18
17	Evaluating the feasibility of ratio control strategy for achieving partial nitritation in a continuous floccular sludge reactor: Experimental demonstration. Bioresource Technology, 2017, 224, 94-100.	9.6	14
18	Performance and microbial ecology of a nitritation sequencing batch reactor treating high-strength ammonia wastewater. Scientific Reports, 2016, 6, 35693.	3.3	10

Wenru Liu

#	Article	IF	CITATIONS
19	Comparing nitrite-limited and ammonium-limited anammox processes treating low-strength wastewater: Functional and population heterogeneity. Chemosphere, 2020, 258, 127290.	8.2	10
20	Insight into how high dissolved oxygen favors the startup of nitritation with aerobic granules. Chemosphere, 2021, 270, 128643.	8.2	9
21	Granules abrasion cause deterioration of nitritation in a mainstream granular sludge reactor with high loading rate. Chemosphere, 2020, 243, 125433.	8.2	8
22	Rapid initiation of a single-stage partial nitritation-anammox process treating low-strength ammonia wastewater: Novel insights into biofilm development on porous polyurethane hydrogel carrier. Bioresource Technology, 2022, 357, 127344.	9.6	8
23	Effective utilization of refractory dissolved organic matters in domestic sewage allows to enhanced nitrogen removal by integrated fermentation, nitrification, denitratation and anammox process. Bioresource Technology, 2022, 354, 127227.	9.6	6
24	The Effect of Anaerobic Co-Substrate on Removal of COD, Phenol and Methane Production in Coal Gasification Wastewater Treatment. Polish Journal of Environmental Studies, 2020, 29, 4175-4181.	1.2	3
25	Response of nitritation granules to anaerobically pre-treated municipal wastewater at low temperatures in a continuous-flow reactor. Chemosphere, 2022, 294, 133831.	8.2	3
26	Achieving high-rate partial nitritation with aerobic granular sludge at low temperatures. Biodegradation, 2022, 33, 45-58.	3.0	2