
Jun Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6360365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive analysis of the clinical immuno-oncology landscape. Annals of Oncology, 2018, 29, 84-91.	0.6	422
2	A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature Communications, 2014, 5, 3065.	5.8	336
3	Immuno-oncology drug development goes global. Nature Reviews Drug Discovery, 2019, 18, 899-900.	21.5	196
4	Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in Experimental Cancer. ACS Nano, 2011, 5, 4422-4433.	7.3	183
5	Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Science Advances, 2015, 1, .	4.7	173
6	Trends in clinical development for PD-1/PD-L1 inhibitors. Nature Reviews Drug Discovery, 2020, 19, 163-164.	21.5	155
7	Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. Journal of the American College of Cardiology, 2018, 71, 527-542.	1.2	149
8	PET Imaging of Tumor-Associated Macrophages with ⁸⁹ Zr-Labeled High-Density Lipoprotein Nanoparticles. Journal of Nuclear Medicine, 2015, 56, 1272-1277.	2.8	145
9	Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano, 2017, 11, 5785-5799.	7.3	137
10	HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages. Bioconjugate Chemistry, 2015, 26, 443-451.	1.8	127
11	Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics. ACS Nano, 2013, 7, 9975-9983.	7.3	104
12	Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6731-E6740.	3.3	95
13	Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nature Communications, 2016, 7, 11838.	5.8	94
14	Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nature Biomedical Engineering, 2018, 2, 279-292.	11.6	94
15	Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Review of Molecular Diagnostics, 2013, 13, 567-580.	1.5	86
16	InÂVivo PET Imaging of HDL in MultipleÂAtherosclerosisÂModels. JACC: Cardiovascular Imaging, 2016, 9, 950-961.	2.3	78
17	Gold Nanocrystal Labeling Allows Low-Density Lipoprotein Imaging from the Subcellular to Macroscopic Level. ACS Nano, 2013, 7, 9761-9770.	7.3	77
18	Imaging Macrophage and Hematopoietic Progenitor Proliferation in Atherosclerosis. Circulation Research, 2015, 117, 835-845.	2.0	72

Jun Tang

#	Article	IF	CITATIONS
19	Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC: Cardiovascular Imaging, 2019, 12, 2015-2026.	2.3	66
20	Near-Infrared Fluorescence Energy Transfer Imaging of Nanoparticle Accumulation and Dissociation Kinetics in Tumor-Bearing Mice. ACS Nano, 2013, 7, 10362-10370.	7.3	60
21	RAF/MEK/extracellular signal–related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. Journal of Experimental Medicine, 2018, 215, 319-336.	4.2	58
22	lmaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Science Translational Medicine, 2019, 11, .	5.8	51
23	Nanomedical Theranostics in Cardiovascular Disease. Current Cardiovascular Imaging Reports, 2012, 5, 19-25.	0.4	50
24	A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis. Journal of Controlled Release, 2017, 262, 47-57.	4.8	44
25	Myeloid cell microsomal prostaglandin E synthase-1 fosters atherogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6828-6833.	3.3	38
26	Liposomal prednisolone promotes macrophage lipotoxicity in experimental atherosclerosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1463-1470.	1.7	32
27	The Calponin Homology Domain of Vav1 Associates with Calmodulin and Is Prerequisite to T Cell Antigen Receptor-induced Calcium Release in Jurkat T Lymphocytes. Journal of Biological Chemistry, 2007, 282, 23737-23744.	1.6	28
28	Targeted PET imaging strategy to differentiate malignant from inflamed lymph nodes in diffuse large B-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7441-E7449.	3.3	28
29	Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer. Chemical Science, 2018, 9, 5646-5657.	3.7	25
30	Fluorescent nanoparticles for the accurate detection of drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 1881-1894.	2.4	24
31	A conserved domain of herpes simplex virus ICP34.5 regulates protein phosphatase complex in mammalian cells. FEBS Letters, 2008, 582, 171-176.	1.3	19
32	Investigating the Cellular Specificity in Tumors of a Surface-Converting Nanoparticle by Multimodal Imaging. Bioconjugate Chemistry, 2017, 28, 1413-1421.	1.8	13
33	Multimodality labeling strategies for the investigation of nanocrystalline cellulose biodistribution in a mouse model of breast cancer. Nuclear Medicine and Biology, 2020, 80-81, 1-12.	0.3	12
34	Nearâ€Infrared Intraoperative Chemiluminescence Imaging. ChemMedChem, 2016, 11, 1978-1982.	1.6	5
35	A Comprehensive Procedure to Evaluate the In Vivo Performance of Cancer Nanomedicines. Journal of Visualized Experiments, 2017, , .	0.2	5
36	Conformational Changes in High-Density Lipoprotein Nanoparticles Induced by High Payloads of Paramagnetic Lipids. ACS Omega, 2016, 1, 470-475.	1.6	4

Jun Tang

#	Article	IF	CITATIONS
37	Evaluation of [18 F]-ATRi as PET tracer for in vivo imaging of ATR in mouse models of brain cancer. Nuclear Medicine and Biology, 2017, 48, 9-15.	0.3	4
38	A Novel Technique for Generating and Observing Chemiluminescence in a Biological Setting. Journal of Visualized Experiments, 2017, , .	0.2	0