Mark D Scheuerell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6359709/publications.pdf

Version: 2024-02-01

65 papers 4,026 citations

32 h-index 62 g-index

66 all docs

66 docs citations

66 times ranked 4257 citing authors

#	Article	IF	CITATIONS
1	Multi-Scale Temporal Patterns in Stream Biogeochemistry Indicate Linked Permafrost and Ecological Dynamics of Boreal Catchments. Ecosystems, 2022, 25, 1189-1206.	3.4	3
2	Multidecadal Trends in Body Size of Puget Sound Chinook Salmon: Analysis of Data from the Tengu Derby, a Culturally Unique Fishery. Marine and Coastal Fisheries, 2022, 14, .	1.4	O
3	An integrated population model for estimating the relative effects of natural and anthropogenic factors on a threatened population of steelhead trout. Journal of Applied Ecology, 2021, 58, 114-124.	4.0	6
4	Multi-decadal shifts in the distribution and timing of Pacific herring (<i>Clupea pallasii</i>) spawning in Prince William Sound, Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 1611-1627.	1.4	7
5	Warmer Winters Increase the Biomass of Phytoplankton in a Large Floodplain River. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006135.	3.0	9
6	Improving short-term recruitment forecasts for coho salmon using a spatiotemporal integrated population model. Fisheries Research, 2021, 242, 106014.	1.7	6
7	Limited evidence for sardine and anchovy asynchrony: re-examining an old story. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192781.	2.6	16
8	Detecting Signals of Largeâ€Scale Climate Phenomena in Discharge and Nutrient Loads in the Mississippiâ€Atchafalaya River Basin. Geophysical Research Letters, 2019, 46, 3791-3801.	4.0	21
9	Longâ€ŧerm perspectives in aquatic research. Limnology and Oceanography, 2019, 64, S2.	3.1	21
10	Coherent population dynamics associated with sockeye salmon juvenile life history strategies. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 1346-1356.	1.4	9
11	Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180915.	2.6	31
12	Characterizing the strength of density dependence in at-risk species through Bayesian model averaging. Ecological Modelling, 2018, 381, 1-9.	2.5	6
13	Applying spatiotemporal models to monitoring data to quantify fish population responses to the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Monitoring and Assessment, 2018, 190, 530.	2.7	7
14	Fertilizer legacies meet saltwater incursion: challenges and constraints for coastal plain wetland restoration. Elementa, 2017, 5, .	3.2	18
15	An explicit solution for calculating optimum spawning stock size from Ricker's stock recruitment model. PeerJ, 2016, 4, e1623.	2.0	10
16	Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha) from Diverse Genetic Stocks and a Large Spatial Extent. PLoS ONE, 2016, 11, e0162121.	2.5	3
17	Joint dynamic species distribution models: a tool for community ordination and spatioâ€ŧemporal monitoring. Global Ecology and Biogeography, 2016, 25, 1144-1158.	5.8	148
18	Population coherence and environmental impacts across spatial scales: a case study of Chinook salmon. Ecosphere, 2016, 7, e01333.	2.2	47

#	Article	IF	CITATIONS
19	Assessing spatial covariance among time series ofÂabundance. Ecology and Evolution, 2016, 6, 2472-2485.	1.9	15
20	Assessing freshwater life-stage vulnerability of an endangered Chinook salmon population to climate change influences on stream habitat. Climate Research, 2016, 71, 127-137.	1.1	18
21	Analyzing largeâ€scale conservation interventions with <scp>B</scp> ayesian hierarchical models: a case study of supplementing threatened <scp>P</scp> acific salmon. Ecology and Evolution, 2015, 5, 2115-2125.	1.9	14
22	Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature. Geophysical Research Letters, 2015, 42, 3380-3388.	4.0	92
23	Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. Methods in Ecology and Evolution, 2015, 6, 627-637.	5.2	135
24	Shifting Regimes and Changing Interactions in the Lake Washington, U.S.A., Plankton Community from 1962–1994. PLoS ONE, 2014, 9, e110363.	2.5	26
25	Demographic modeling of citizen science data informs habitat preferences and population dynamics of recovering fishes. Ecology, 2014, 95, 3251-3258.	3.2	18
26	Performance of salmon fishery portfolios across western <scp>N</scp> orth <scp>A</scp> merica. Journal of Applied Ecology, 2014, 51, 1554-1563.	4.0	51
27	Influence of ocean and freshwater conditions on <scp>C</scp> olumbia <scp>R</scp> iver sockeye salmon <i>Oncorhynchus nerka</i>	1.7	6
28	Oceanographic influences on patterns in North Pacific salmon abundance. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 226-235.	1.4	29
29	Spatial variation buffers temporal fluctuations in early juvenile survival for an endangered <scp>P</scp> acific salmon. Journal of Animal Ecology, 2014, 83, 157-167.	2.8	37
30	Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models. Ecology, 2013, 94, 2663-2669.	3.2	91
31	Assessing marine plankton community structure from long-term monitoring data with multivariate autoregressive (MAR) models: a comparison of fixed station versus spatially distributed sampling data. Limnology and Oceanography: Methods, 2012, 10, 54-64.	2.0	10
32	Interacting Effects of Translocation, Artificial Propagation, and Environmental Conditions on the Marine Survival of Chinook Salmon from the Columbia River, Washington, U.S.A Conservation Biology, 2012, 26, 912-922.	4.7	22
33	Climate shifts the interaction web of a marine plankton community. Global Change Biology, 2012, 18, 2498-2508.	9.5	45
34	Using Time Series Analysis to Characterize Evolutionary and Plastic Responses to Environmental Change: A Case Study of a Shift toward Earlier Migration Date in Sockeye Salmon. American Naturalist, 2011, 178, 755-773.	2.1	103
35	Habitat structure determines resource use by zooplankton in temperate lakes. Ecology Letters, 2011, 14, 364-372.	6.4	101
36	Relating juvenile migration timing and survival to adulthood in two species of threatened Pacific salmon (<i>Oncorhynchus</i> spp.). Journal of Applied Ecology, 2009, 46, 983-990.	4.0	117

#	Article	IF	CITATIONS
37	Using an unplanned experiment to evaluate the effects of hatcheries and environmental variation on threatened populations of wild salmon. Biological Conservation, 2009, 142, 2449-2455.	4.1	52
38	Climate and intraspecific competition control the growth and life history of juvenile sockeye salmon (Oncorhynchus nerka) in Iliamna Lake, Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 238-246.	1.4	45
39	Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system. Molecular Ecology, 2008, 17, 84-96.	3.9	122
40	Big dams and salmon evolution: changes in thermal regimes and their potential evolutionary consequences. Evolutionary Applications, 2008, 1, 286-299.	3.1	81
41	Varying effects of anadromous sockeye salmon on the trophic ecology of two species of resident salmonids in southwest Alaska. Freshwater Biology, 2007, 52, 1944-1956.	2.4	86
42	Translating restoration scenarios into habitat conditions: an initial step in evaluating recovery strategies for Chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 1578-1595.	1.4	37
43	The Shiraz model: a tool for incorporating anthropogenic effects and fish–habitat relationships in conservation planning. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 1596-1607.	1.4	97
44	Coalescence in the Lake Washington story: Interaction strengths in a planktonic food web. Limnology and Oceanography, 2006, 51, 2042-2051.	3.1	67
45	The Interplay between Climate Variability and Density Dependence in the Population Viability of Chinook Salmon. Conservation Biology, 2006, 20, 190-200.	4.7	91
46	Influence of Juvenile Size on the Age at Maturity of Individually Marked Wild Chinook Salmon. Transactions of the American Fisheries Society, 2005, 134, 999-1004.	1.4	16
47	Forecasting climate-induced changes in the survival of Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha). Fisheries Oceanography, 2005, 14, 448-457.	1.7	91
48	Variation in spatial and temporal gradients in zooplankton spring development: the effect of climatic factors. Freshwater Biology, 2005, 50, 1007-1021.	2.4	31
49	A new perspective on the importance of marine-derived nutrients to threatened stocks of Pacific salmon (Oncorhynchus spp.). Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 961-964.	1.4	59
50	Temporal dynamics in foraging behavior of a pelagic predator. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 2494-2501.	1.4	17
51	EFFECTS OF CHANGING CLIMATE ON ZOOPLANKTON AND JUVENILE SOCKEYE SALMON GROWTH IN SOUTHWESTERN ALASKA. Ecology, 2005, 86, 198-209.	3.2	137
52	Spatial–Temporal Dynamics of Early Feeding Demand and Food Supply for Sockeye Salmon Fry in Lake Washington. Transactions of the American Fisheries Society, 2004, 133, 1014-1032.	1.4	35
53	Disturbance of freshwater habitats by anadromous salmon in Alaska. Oecologia, 2004, 139, 298-308.	2.0	90
54	Changes in the Spatial Distribution of Fishes in Lakes Along a Residential Development Gradient. Ecosystems, 2004, 7, 98-106.	3.4	98

#	Article	IF	CITATIONS
55	QUANTIFYING AGGREGATION AND ASSOCIATION IN THREE-DIMENSIONAL LANDSCAPES. Ecology, 2004, 85, 2332-2340.	3.2	10
56	Pacific salmon and the ecology of coastal ecosystems. Frontiers in Ecology and the Environment, 2003, 1, 31-37.	4.0	274
57	STATE OF THEWORLD'SFISHERIES. Annual Review of Environment and Resources, 2003, 28, 359-399.	13.4	279
58	Lake Eutrophication at the Urban Fringe, Seattle Region, USA. Ambio, 2003, 32, 13-18.	5.5	55
59	DIEL VERTICAL MIGRATION BY JUVENILE SOCKEYE SALMON: EMPIRICAL EVIDENCE FOR THE ANTIPREDATION WINDOW. Ecology, 2003, 84, 1713-1720.	3.2	145
60	Pacific Salmon and the Ecology of Coastal Ecosystems. Frontiers in Ecology and the Environment, 2003, 1, 31.	4.0	4
61	Environmental and algal forcing of Daphnia production dynamics. Limnology and Oceanography, 2002, 47, 1477-1485.	3.1	26
62	Comparison of acoustic and Miller high-speed sampler estimates of larval fish abundance in Oneida Lake, New York. Fisheries Research, 2002, 57, 145-154.	1.7	23
63	Habitat coupling in lake ecosystems. Oikos, 2002, 98, 177-189.	2.7	556
64	Exotic Species in the Hudson River Basin: A History of Invasions and Introductions. Estuaries and Coasts, 1996, 19, 814.	1.7	92
65	Effects of predators and food supply on diel vertical migration of <i>Daphnia</i> ., 1993, , 153-171.		11