Mark D Scheuerell

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6359709/publications.pdf
Version: 2024-02-01

$1 \quad$ Habitat coupling in lake ecosystems. Oikos, 2002, 98, 177-189. 2.7

2 STATE OF THEWORLD'SFISHERIES. Annual Review of Environment and Resources, 2003, 28, 359-399.5 DIEL VERTICAL MIGRATION BY JUVENILE SOCKEYE SALMON: EMPIRICAL EVIDENCE FOR THE ANTIPREDATION
5 WINDOW. Ecology, 2003, 84, 1713-1720.$3.2 \quad 145$
$6 \quad$ EFFECTS OF CHANGING CLIMATE ON ZOOPLANKTON AND
$5.2 \quad 135$
8 Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacificsalmon in the Columbia River hydropower system. Molecular Ecology, 2008, 17, 84-96.
9 Relating juvenile migration timing and survival to adulthood in two species of threatened Pacific
salmon (<i>Oncorhynchus</i> spp.). Journal of Applied Ecology, 2009, 46, 983-990. 117
Using Time Series Analysis to Characterize Evolutionary and Plastic Responses to Environmental 10 Change: A Case Study of a Shift toward Earlier Migration Date in Sockeye Salmon. American Naturalist, 2.1 103
2011, 178, 755-773.
11 Habitat structure determines resource use by zooplankton in temperate lakes. Ecology Letters, 2011, 14, 364-372.

$6.4 \quad 101$

Changes in the Spatial Distribution of Fishes in Lakes Along a Residential Development Gradient. Ecosystems, 2004, 7, 98-106.
3.4

9812 Ecosystems, 2004, 7, 98-106.1.497
The Shiraz model: a tool for incorporating anthropogenic effects and fishâ€"habitat relationships in 13 conservation planning. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 1596-1607.Exotic Species in the Hudson River Basin: A History of Invasions and Introductions. Estuaries andCoasts, 1996, 19, 814.1.792
Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature. 4.0 92
15 Watershed geomorphology and snowmelt control strForecasting climate-induced changes in the survival of Snake River spring/summer Chinook salmon1.7
19 Disturbance of freshwater habitats by anadromous salmon in Alaska. Oecologia, 2004, 139, 298-308.
Big dams and salmon evolution: changes in thermal regimes and their potential evolutionary
consequences. Evolutionary Applications, 2008, 1, 286-299.
27 salmon. Ecosphere, 2016, 7, e01333.$2.2 \quad 47$
Climate and intraspecific competition control the growth and life history of juvenile sockeye salmon (Oncorhynchus nerka) in Iliamna Lake, Alaska. Canadian Journal of Fisheries and Aquatic Sciences,
1.4
45
2009, 66, 238-246.
29 Climate shifts the interaction web of a marine plankton community. Clobal Change Biology, 2012, 18,
2498-2508. 45Translating restoration scenarios into habitat conditions: an initial step in evaluating recovery30 strategies for Chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and1.4
Aquatic Sciences, 2006, 63, 1578-1595.
33 Variation in spatial and temporal gradients in zooplankton spring development: the effect of climatic 2.4Spatial heterogeneity contributes more to portfolio effects than species variability in34 bottom-associated marine fishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285,
20180915.

Demographic modeling of citizen science data informs habitat preferences and population dynamics of recovering fishes. Ecology, 2014, 95, 3251-3258.
Fertilizer legacies meet saltwater incursion: challenges and constraints for coastal plain wetland

restoration. Elementa, 2017,5,. | Assessing freshwater life-stage vulnerability of an endangered Chinook salmon population to climate |
| :--- |
| change influences on stream habitat. Climate Research, 2016, 71, 127-137. |

> Temporal dynamics in foraging behavior of a pelagic predator. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 2494-2501.

Influence of Juvenile Size on the Age at Maturity of Individually Marked Wild Chinook Salmon.
1.4

```
47 Limited evidence for sardine and anchovy asynchrony: re-examining an old story. Proceedings of the
Royal Society B: Biological Sciences, 2020, 287, 20192781.
```

48 Assessing spatial covariance among time series ofÂabundance. Ecology and Evolution, 2016, 6, 2472-2485.
1.9

15
Analyzing largeâ€scale conservation interventions with <scp>B</scp>ayesian hierarchical models: a
case study of supplementing threatened $\langle s c p\rangle P</ s c p>$ acific salmon. Ecology and Evolution, 2015, 5,
$2115-2125$.

50 Effects of predators and food supply on diel vertical migration of <i>Daphnia</i>. , 1993, , 153-171.

Assessing marine plankton community structure from long-term monitoring data with multivariate
52 autoregressive (MAR) models: a comparison of fixed station versus spatially distributed sampling data.
2.0

10 Limnology and Oceanography: Methods, 2012, 10, 54-64.

53
An explicit solution for calculating optimum spawning stock size from Rickerâ $€^{\mathrm{TM}}$ s stock recruitment
model. Peerl, 2016, 4, e1623.
2.0

10

Applying spatiotemporal models to monitoring data to quantify fish population responses to the
56 Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Monitoring and Assessment, 2018, 190, 530.
Multi-decadal shifts in the distribution and timing of Pacific herring (<i>Clupea pallasii </i>) spawning
in Prince William Sound, Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 1611-1627.

58 Influence of ocean and freshwater conditions on <scp>C</scp>olumbia <scp>R</scp>iver sockeye salmon <i>Oncorhynchus nerka adult return rates. Fisheries Oceanography, 2014, 23, 210-224.

59	Characterizing the strength of density dependence in at-risk species through Bayesian model averaging. Ecological Modelling, 2018, 381, 1-9.	2.5	6
60	An integrated population model for estimating the relative effects of natural and anthropogenic factors on a threatened population of steelhead trout. Journal of Applied Ecology, 2021, 58, 114-124.	4.0	6
61	Improving short-term recruitment forecasts for coho salmon using a spatiotemporal integrated population model. Fisheries Research, 2021, 242, 106014.	1.7	6

