Kelly A Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6359643/publications.pdf

Version: 2024-02-01

414414 430874 1,212 32 18 32 citations h-index g-index papers 35 35 35 1876 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Endocardial identity is established during early somitogenesis by Bmp signalling acting upstream of <i>npas4l</i> and <i>etv2</i> . Development (Cambridge), 2022, 149, .	2.5	2
2	The zebrafish <i>grime</i> mutant uncovers an evolutionarily conserved role for Tmem161b in the control of cardiac rhythm. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
3	Getting to the Heart of Left–Right Asymmetry: Contributions from the Zebrafish Model. Journal of Cardiovascular Development and Disease, 2021, 8, 64.	1.6	8
4	Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle. Journal of Cell Biology, 2021 , 220 , .	5.2	15
5	The RNA helicase Ddx21 controls Vegfc-driven developmental lymphangiogenesis by balancing endothelial cell ribosome biogenesis and p53 function. Nature Cell Biology, 2021, 23, 1136-1147.	10.3	17
6	Localised Collagen2a1 secretion supports lymphatic endothelial cell migration in the zebrafish embryo. Development (Cambridge), 2020, 147, .	2.5	7
7	Talkin' â€~bout regeneration: new advances in cardiac regeneration using the zebrafish. Current Opinion in Physiology, 2020, 14, 48-55.	1.8	2
8	The Alternative Splicing Regulator Nova2 Constrains Vascular Erk Signaling to Limit Specification of the Lymphatic Lineage. Developmental Cell, 2019, 49, 279-292.e5.	7.0	35
9	Myosin Vb is required for correct trafficking of Nâ€cadherin and cardiac chamber ballooning. Developmental Dynamics, 2019, 248, 284-295.	1.8	6
10	Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume. Development (Cambridge), 2018, 145, .	2.5	35
11	Utilising polymorphisms to achieve allele-specific genome editing in zebrafish. Biology Open, 2017, 6, 125-131.	1.2	19
12	Tmem2 Regulates Embryonic Vegf Signaling by Controlling Hyaluronic Acid Turnover. Developmental Cell, 2017, 40, 123-136.	7.0	63
13	Tmem2 Regulates Embryonic Vegf Signaling by Controlling Hyaluronic Acid Turnover. Developmental Cell, 2017, 40, 421.	7.0	12
14	Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nature Communications, 2017, 8, 1402.	12.8	73
15	The developmental origins and lineage contributions of endocardial endothelium. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1937-1947.	4.1	29
16	<i>carbamoylâ€phosphate synthetase 2</i> , <i>aspartate transcarbamylase</i> , and <i>dihydroorotase</i> (<i>cad</i>) regulates Notch signaling and vascular development in zebrafish. Developmental Dynamics, 2015, 244, 1-9.	1.8	12
17	<i>mafba</i> is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes and Development, 2015, 29, 1618-1630.	5.9	63
18	Arap3 is dysregulated in a mouse model of hypotrichosis–lymphedema–telangiectasia and regulates lymphatic vascular development. Human Molecular Genetics, 2014, 23, 1286-1297.	2.9	36

#	Article	IF	Citations
19	Pkd1 Regulates Lymphatic Vascular Morphogenesis during Development. Cell Reports, 2014, 7, 623-633.	6.4	77
20	VEGFD regulates blood vascular development by modulating SOX18 activity. Blood, 2014, 123, 1102-1112.	1.4	65
21	A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nature Communications, 2013, 4, 2754.	12.8	102
22	Bmp Signaling Exerts Opposite Effects on Cardiac Differentiation. Circulation Research, 2012, 110, 578-587.	4.5	83
23	ALK2 mutation in a patient with Down's syndrome and a congenital heart defect. European Journal of Human Genetics, 2011, 19, 389-393.	2.8	33
24	Transmembrane protein 2 (Tmem2) is required to regionally restrict atrioventricular canal boundary and endocardial cushion development. Development (Cambridge), 2011, 138, 4193-4198.	2.5	48
25	Bmp and Nodal Independently Regulate lefty1 Expression to Maintain Unilateral Nodal Activity during Left-Right Axis Specification in Zebrafish. PLoS Genetics, 2011, 7, e1002289.	3.5	45
26	Genetics of Congenital Heart Defects: A Candidate Gene Approach. Trends in Cardiovascular Medicine, 2010, 20, 124-128.	4.9	13
27	Dominant-Negative <i>ALK2</i> Allele Associates With Congenital Heart Defects. Circulation, 2009, 119, 3062-3069.	1.6	97
28	Genes in congenital heart disease: atrioventricular valve formation. Basic Research in Cardiology, 2008, 103, 216-227.	5.9	45
29	Rotation and Asymmetric Development of the Zebrafish Heart Requires Directed Migration of Cardiac Progenitor Cells. Developmental Cell, 2008, 14, 287-297.	7.0	109
30	Interrelationships between circulating gastrin and iron status in mice and humans. American Journal of Physiology - Renal Physiology, 2008, 295, G855-G861.	3.4	14
31	Circulating gastrin is increased in hemochromatosis. FEBS Letters, 2006, 580, 6195-6198.	2.8	11
32	Production, Secretion, and Biological Activity of the C-Terminal Flanking Peptide of Human Progastrin. Gastroenterology, 2006, 131, 1463-1474.	1.3	20