Pieter van Dokkum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6359200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM <i>Z</i> = 0-2. Astrophysical Journal, 2009, 691, 1879-1895.	4.5	715
2	GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE <i>z</i> = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES. Astrophysical Journal, 2014, 783, 85.	4.5	350
3	A PUBLIC <i> K _s </i> -SELECTED CATALOG IN THE COSMOS/ULTRAVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS [,] . Astrophysical Journal, Supplement Series, 2013, 206, 8.	7.7	331
4	A galaxy lacking dark matter. Nature, 2018, 555, 629-632.	27.8	268
5	THE EVOLVING RELATIONS BETWEEN SIZE, MASS, SURFACE DENSITY, AND STAR FORMATION IN 3 × 10 ⁴ GALAXIES SINCE <i>z</i> = 2. Astrophysical Journal, 2010, 713, 738-750.	4.5	212
6	COUNTING LOW-MASS STARS IN INTEGRATED LIGHT. Astrophysical Journal, 2012, 747, 69.	4.5	198
7	A HIGH STELLAR VELOCITY DISPERSION AND â^¼100 GLOBULAR CLUSTERS FOR THE ULTRA-DIFFUSE GALAXY DRAGONFLY 44. Astrophysical Journal Letters, 2016, 828, L6.	8.3	193
8	The formation of massive, compact galaxies at zÂ=Â2 in the Illustris simulation. Monthly Notices of the Royal Astronomical Society, 2015, 449, 361-372.	4.4	187
9	A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT <i>z</i> â^¼ 4 FROM ZFOURGE. Astrophysical Journal Letters, 2014, 783, L14.	8.3	171
10	THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO zÂâ^1⁄4Â3.5*. Astrophysical Journal, 2016, 830, 51.	4.5	166
11	An Older, More Quiescent Universe from Panchromatic SED Fitting of the 3D-HST Survey. Astrophysical Journal, 2019, 877, 140.	4.5	156
12	A Second Galaxy Missing Dark Matter in the NGC 1052 Group. Astrophysical Journal Letters, 2019, 874, L5.	8.3	129
13	The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. III. Radial Gradients. Astrophysical Journal, 2017, 841, 68.	4.5	126
14	COSMOS-DASH: The Evolution of the Galaxy Size–Mass Relation since zÂâ^¼Â3 from New Wide-field WFC3 Imaging Combined with CANDELS/3D-HST. Astrophysical Journal, 2019, 880, 57.	4.5	118
15	THE EVOLUTION OF METALLICITY AND METALLICITY GRADIENTS FROM z = 2.7 TO 0.6 WITH KMOS ^{3D} . Astrophysical Journal, 2016, 827, 74.	4.5	109
16	Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 [*] . Astrophysical Journal, 2017, 847, 134.	4.5	106
17	Extensive Globular Cluster Systems Associated with Ultra Diffuse Galaxies in the Coma Cluster. Astrophysical Journal Letters, 2017, 844, L11.	8.3	104
18	THE DRAGONFLY NEARBY GALAXIES SURVEY. I. SUBSTANTIAL VARIATION IN THE DIFFUSE STELLAR HALOS AROUND SPIRAL GALAXIES. Astrophysical Journal, 2016, 830, 62.	4.5	103

#	Article	IF	CITATIONS
19	THE DRAGONFLY NEARBY GALAXIES SURVEY. II. ULTRA-DIFFUSE GALAXIES NEAR THE ELLIPTICAL GALAXY NGC 5485. Astrophysical Journal, 2016, 833, 168.	4.5	101
20	THE DISCOVERY OF SEVEN EXTREMELY LOW SURFACE BRIGHTNESS GALAXIES IN THE FIELD OF THE NEARBY SPIRAL GALAXY M101. Astrophysical Journal Letters, 2014, 787, L37.	8.3	99
21	THE NATURE OF EXTREME EMISSION LINE GALAXIES AT <i>z</i> = 1-2: KINEMATICS AND METALLICITIES FROM NEAR-INFRARED SPECTROSCOPY. Astrophysical Journal, 2014, 791, 17.	4.5	97
22	Spectroscopic Confirmation of Multiple Red Galaxy-Galaxy Mergers in MS 1054-03 (z = 0.83). Astrophysical Journal, 2005, 627, L25-L28.	4.5	96
23	A CONSISTENT STUDY OF METALLICITY EVOLUTION AT 0.8 < <i>z</i> < 2.6. Astrophysical Journal Letters, 2014, 789, L40.	8.3	96
24	Hα EQUIVALENT WIDTHS FROM THE 3D-HST SURVEY: EVOLUTION WITH REDSHIFT AND DEPENDENCE ON STELLAR MASS. Astrophysical Journal Letters, 2012, 757, L22.	8.3	91
25	Still Missing Dark Matter: KCWI High-resolution Stellar Kinematics of NGC1052-DF2. Astrophysical Journal Letters, 2019, 874, L12.	8.3	82
26	EXPLORING THE <i>z</i> = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES. Astrophysical Journal Letters, 2014, 787, L36.	8.3	80
27	The Brightest zÂ≳Â8 Galaxies over the COSMOS UltraVISTA Field. Astrophysical Journal, 2019, 883, 99.	4.5	77
28	Timing the Early Assembly of the Milky Way with the H3 Survey. Astrophysical Journal Letters, 2020, 897, L18.	8.3	77
29	Spatially Resolved Stellar Kinematics of the Ultra-diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, and Cold Dark Matter Halo Fits. Astrophysical Journal, 2019, 880, 91.	4.5	76
30	HOW DEAD ARE DEAD GALAXIES? MID-INFRARED FLUXES OF QUIESCENT GALAXIES AT REDSHIFT 0.3 < <i>z</i> < 2.5: IMPLICATIONS FOR STAR FORMATION RATES AND DUST HEATING. Astrophysical Journal, 2014, 796, 35.	4.5	75
31	TRACING GALAXIES THROUGH COSMIC TIME WITH NUMBER DENSITY SELECTION. Astrophysical Journal, 2013, 766, 33.	4.5	74
32	An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter. Astrophysical Journal Letters, 2018, 856, L30.	8.3	74
33	A massive galaxy in its core formation phase three billion years after the Big Bang. Nature, 2014, 513, 394-397.	27.8	71
34	A New Census of the 0.2Â<ÂzÂ<Â3.0 Universe. I. The Stellar Mass Function. Astrophysical Journal, 2020, 893, 111.	4.5	71
35	Fast, Slow, Early, Late: Quenching Massive Galaxies at z â^1⁄4 0.8. Astrophysical Journal, 2022, 926, 134.	4.5	70
36	Episodic molecular outflow in the very young protostellar cluster Serpens South. Nature, 2015, 527, 70-73.	27.8	68

#	Article	IF	CITATIONS
37	The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group. Astrophysical Journal, 2017, 837, 136.	4.5	67
38	The Dragonfly Nearby Galaxies Survey. V. HST/ACS Observations of 23 Low Surface Brightness Objects in the Fields of NGC 1052, NGC 1084, M96, and NGC 4258. Astrophysical Journal, 2018, 868, 96.	4.5	66
39	The Extended IRTF Spectral Library: Expanded Coverage in Metallicity, Temperature, and Surface Gravity. Astrophysical Journal, Supplement Series, 2017, 230, 23.	7.7	65
40	THE SIZES OF MASSIVE QUIESCENT AND STAR-FORMING GALAXIES AT <i>z</i> â^¼ 4 WITH ZFOURGE AND CANDELS. Astrophysical Journal Letters, 2015, 808, L29.	8.3	64
41	MASSIVE AND NEWLY DEAD: DISCOVERY OF A SIGNIFICANT POPULATION OF GALAXIES WITH HIGH-VELOCITY DISPERSIONS AND STRONG BALMER LINES AT <i>z</i> â ¹ /4 1.5 FROM DEEP KECK SPECTRA AND <i>HST</i> /WFC IMAGING. Astrophysical Journal Letters, 2013, 764, L8.	C 8. 3	58
42	The Size Evolution of Star-forming Galaxies since zÂâ^¼Â7 Using ZFOURGE. Astrophysical Journal Letters, 2017, 834, L11.	8.3	57
43	Low Metallicities and Old Ages for Three Ultra-diffuse Galaxies in the Coma Cluster. Astrophysical Journal, 2018, 859, 37.	4.5	56
44	A Mass-dependent Slope of the Galaxy Size–Mass Relation out to zÂâ^¼Â3: Further Evidence for a Direct Relation between Median Galaxy Size and Median Halo Mass. Astrophysical Journal Letters, 2019, 872, L13.	8.3	56
45	Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 219-235.	4.4	56
46	Ultra-diffuse and Ultra-compact Galaxies in the Frontier Fields Cluster Abell 2744. Astrophysical Journal Letters, 2017, 839, L17.	8.3	55
47	Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties. Astrophysical Journal, 2018, 854, 62.	4.5	54
48	The Regulation of Galaxy Growth along the Size–Mass Relation by Star Formation, as Traced by Hα in KMOS ^{3D} Galaxies at 0.7Å≲ÂzÂ≲Â2.7*. Astrophysical Journal, 2020, 892, 1.	4.5	54
49	Spatially Resolved Stellar Kinematics from LEGA-C: Increased Rotational Support in zÂâ^1⁄4Â0.8 Quiescent Galaxies. Astrophysical Journal, 2018, 858, 60.	4.5	52
50	The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints. Astrophysical Journal, 2017, 845, 157.	4.5	49
51	Molecular Gas Contents and Scaling Relations for Massive, Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey. Astrophysical Journal, 2018, 860, 103.	4.5	48
52	The Hubble Legacy Field GOODS-S Photometric Catalog. Astrophysical Journal, Supplement Series, 2019, 244, 16.	7.7	47
53	Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys. Astrophysical Journal, 2018, 856, 69.	4.5	46
54	The Stellar Populations of Two Ultra-diffuse Galaxies from Optical and Near-infrared Photometry. Astrophysical Journal, 2018, 858, 29.	4.5	46

#	Article	IF	CITATIONS
55	The Distance of the Dark Matter Deficient Galaxy NGC 1052–DF2. Astrophysical Journal Letters, 2018, 864, L18.	8.3	45
56	Stellar Populations of over 1000 zÂâ^¼Â0.8 Galaxies from LEGA-C: Ages and Star Formation Histories from D _n 4000 and Hδ. Astrophysical Journal, 2018, 855, 85.	4.5	45
57	KMOS ^{3D} Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7Â<ÂzÂ<Â2.7 ^{â^—} . Astrophysical Journal Letters, 2017, 841, L6.	8.3	44
58	The Mass, Color, and Structural Evolution of Today's Massive Galaxies Since zÂâ^¼Â5. Astrophysical Journal, 2017, 837, 147.	4.5	44
59	AGES OF MASSIVE GALAXIES AT 0.5 > z > 2.0 FROM 3D-HST REST-FRAME OPTICAL SPECTROSCOPY. Astrophysical Journal, 2016, 822, 1.	4.5	37
60	A Tip of the Red Giant Branch Distance to the Dark Matter Deficient Galaxy NGC 1052-DF4 from Deep Hubble Space Telescope Data. Astrophysical Journal Letters, 2020, 895, L4.	8.3	36
61	A Tip of the Red Giant Branch Distance of 22.1 ± 1.2 Mpc to the Dark Matter Deficient Galaxy NGC 1052–DF2 from 40 Orbits of Hubble Space Telescope Imaging. Astrophysical Journal Letters, 2021, 914, L12.	8.3	35
62	The Dragonfly Wide Field Survey. I. Telescope, Survey Design, and Data Characterization. Astrophysical Journal, 2020, 894, 119.	4.5	35
63	Spatially Resolved Stellar Kinematics of the Ultra-diffuse Galaxy Dragonfly 44. II. Constraints on Fuzzy Dark Matter. Astrophysical Journal, 2019, 885, 155.	4.5	33
64	A trail of dark-matter-free galaxies from a bullet-dwarf collision. Nature, 2022, 605, 435-439.	27.8	32
65	A Deficit of Dark Matter from Jeans Modeling of the Ultra-diffuse Galaxy NGC 1052-DF2. Astrophysical Journal Letters, 2018, 863, L15.	8.3	31
66	Evidence of Absence of Tidal Features in the Outskirts of Ultra Diffuse Galaxies in the Coma Cluster. Astrophysical Journal, 2017, 851, 27.	4.5	30
67	The Maybe Stream: A Possible Cold Stellar Stream in the Ultra-diffuse Galaxy NGC1052-DF2. Research Notes of the AAS, 2018, 2, 16.	0.7	27
68	A Complete Census of Luminous Stellar Variability on Day to Decade Timescales. Astrophysical Journal, 2018, 864, 111.	4.5	26
69	Measuring Distances to Low-luminosity Galaxies Using Surface Brightness Fluctuations. Astrophysical Journal, 2021, 908, 24.	4.5	26
70	Initial Mass Function Variability (or Not) among Low-velocity Dispersion, Compact Stellar Systems. Astrophysical Journal Letters, 2017, 850, L14.	8.3	25
71	A New View of the Size–Mass Distribution of Galaxies: Using r ₂₀ and r ₈₀ Instead of r ₅₀ . Astrophysical Journal Letters, 2019, 872, L14.	8.3	25
72	Dragonfly Imaging of the Galaxy NGC 5907: A Different View of the Iconic Stellar Stream. Astrophysical Journal Letters, 2019, 883, L32.	8.3	25

Pieter van Dokkum

#	Article	IF	CITATIONS
73	On the Random Motion of Nuclear Objects in a Fuzzy Dark Matter Halo. Astrophysical Journal, 2021, 916, 27.	4.5	25
74	A Revised Velocity for the Globular Cluster GC-98 in the Ultra Diffuse Galaxy NGC 1052-DF2. Research Notes of the AAS, 2018, 2, 54.	0.7	25
75	LARGE-SCALE STAR-FORMATION-DRIVEN OUTFLOWS AT 1 < <i>z</i> < 2 IN THE 3D-HST SURVEY. Astrophysical Journal, 2012, 760, 49.	4.5	24
76	Blue Rest-frame UV-optical Colors in z â^¼ 8 Galaxies from GREATS: Very Young Stellar Populations at â^¼650 Myr of Cosmic Time. Astrophysical Journal, 2022, 927, 48.	4.5	24
77	NGC 5846-UDG1: A Galaxy Formed Mostly by Star Formation in Massive, Extremely Dense Clumps of Gas. Astrophysical Journal Letters, 2022, 927, L28.	8.3	23
78	Galaxy Merger Fractions in Two Clusters at Using the Hubble Space Telescope. Astrophysical Journal, 2019, 874, 63.	4.5	22
79	On the Orbital Decay of Globular Clusters in NGC 1052-DF2: Testing a Baryon-only Mass Model. Astrophysical Journal, 2019, 877, 133.	4.5	22
80	Revisiting the Size–Luminosity Relation in the Era of Ultra Diffuse Galaxies. Astrophysical Journal, 2019, 875, 155.	4.5	20
81	A Complex Luminosity Function for the Anomalous Globular Clusters in NGC 1052-DF2 and NGC 1052-DF4. Astrophysical Journal, 2021, 909, 179.	4.5	19
82	A STRONGLY LENSED MASSIVE ULTRACOMPACT QUIESCENT GALAXY AT <i>z</i> â^1/4 2.4 IN THE COSMOS/UltraVISTA FIELD. Astrophysical Journal, 2012, 761, 142.	4.5	17
83	The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841. Astrophysical Journal, 2018, 855, 78.	4.5	17
84	High-redshift Massive Quiescent Galaxies Are as Flat as Star-forming Galaxies: The Flattening of Galaxies and the Correlation with Structural Properties in CANDELS/3D-HST. Astrophysical Journal, 2019, 871, 76.	4.5	17
85	The SLUGGS Survey: The Inner Dark Matter Density Slope of the Massive Elliptical Galaxy NGC 1407. Astrophysical Journal, 2018, 863, 130.	4.5	16
86	Multi-resolution Filtering: An Empirical Method for Isolating Faint, Extended Emission in Dragonfly Data and Other Low Resolution Images. Publications of the Astronomical Society of the Pacific, 2020, 132, 074503.	3.1	16
87	A Recently Quenched Isolated Dwarf Galaxy Outside of the Local Group Environment. Astrophysical Journal Letters, 2021, 914, L23.	8.3	16
88	The Spitzer/IRAC Legacy over the GOODS Fields: Full-depth 3.6, 4.5, 5.8, and 8.0 μm Mosaics and Photometry for >9000 Galaxies at z ⹼ 3.5–10 from the GOODS Reionization Era Wide-area Treasury from Spitzer (GREATS). Astrophysical Journal, Supplement Series, 2021, 257, 68.	7.7	15
89	The Geometry of Cold, Metal-enriched Gas around Galaxies at z â^1⁄4 1.2. Astrophysical Journal, 2021, 913, 50.	4.5	14
90	On the Evolution of the Globular Cluster System in NGC 1052-DF2: Dynamical Friction, Globular–Globular Interactions, and Galactic Tides. Astrophysical Journal, 2020, 903, 149.	4.5	13

#	Article	IF	CITATIONS
91	Spectroscopic Constraints on the Buildup of Intracluster Light in the Coma Cluster. Astrophysical Journal, 2020, 894, 32.	4.5	12
92	HST F160W Imaging of Very Massive Galaxies at 1.5Â<ÂzÂ<Â3.0: Diversity of Structures and the Effect of Close Pairs on Number Density Estimates. Astrophysical Journal, 2019, 871, 201.	4.5	11
93	The Dragonfly Edge-on Galaxies Survey: Shaping the Outer disk of NGC 4565 via Accretion. Astrophysical Journal, 2020, 897, 108.	4.5	11
94	Spatially Resolved Stellar Spectroscopy of the Ultra-diffuse Galaxy Dragonfly 44. III. Evidence for an Unexpected Star Formation History under Conventional Galaxy Evolution Processes. Astrophysical Journal, 2022, 924, 32.	4.5	11
95	Complete IRAC Mapping of the CFHTLS-DEEP, MUSYC, and NMBS-II Fields. Publications of the Astronomical Society of the Pacific, 2018, 130, 124501.	3.1	10
96	On the Detectability of Visible-wavelength Line Emission from the Local Circumgalactic and Intergalactic Medium. Astrophysical Journal, 2019, 877, 4.	4.5	10
97	Dark Matter Halo Masses from Abundance Matching and Kinematics: Tensions for the Milky Way and M31. Research Notes of the AAS, 2021, 5, 23.	0.7	10
98	The Distance to NGC 1042 in the Context of its Proposed Association with the Dark Matter-deficient Galaxies NGC 1052-DF2 and NGC 1052-DF4. Research Notes of the AAS, 2019, 3, 29.	0.7	9
99	Near-infrared Spectroscopy of Five Ultra-massive Galaxies at 1.7Â<ÂzÂ<Â2.7. Astrophysical Journal, 2017, 838, 57.	4.5	8
100	Measuring Star Formation Histories, Distances, and Metallicities with Pixel Color–Magnitude Diagrams. I. Model Definition and Mock Tests. Astrophysical Journal, 2019, 876, 78.	4.5	8
101	A Method to Characterize the Wide-angle Point-Spread Function of Astronomical Images. Astrophysical Journal, 2022, 925, 219.	4.5	8
102	The Dragonfly Wide Field Survey. II. Accurate Total Luminosities and Colors of Nearby Massive Galaxies and Implications for the Galaxy Stellar-mass Function. Astrophysical Journal, 2021, 909, 74.	4.5	7
103	Stellar Halos from the The Dragonfly Edge-on Galaxies Survey. Astrophysical Journal, 2022, 932, 44.	4.5	7
104	Bayesian Fitting of Multi-Gaussian Expansion Models to Galaxy Images. Astrophysical Journal, 2021, 923, 124.	4.5	5
105	Anomalously Narrow Line Widths of Compact Massive Star-forming Galaxies at zÂâ^1⁄4Â2.3: A Possible Inclination Bias in the Size–Mass Plane. Astrophysical Journal Letters, 2019, 886, L28.	8.3	4
106	Measuring Star Formation Histories, Distances, and Metallicities with Pixel Color–Magnitude Diagrams. II. Applications to Nearby Elliptical Galaxies. Astrophysical Journal, 2020, 893, 160.	4.5	3
107	Variation in the Stellar Initial Mass Function from the Chromospheric Activity of M Dwarfs in Early-type Galaxies. Astrophysical Journal, 2021, 923, 43.	4.5	3
108	Future Prospects: Deep Imaging of Galaxy Outskirts Using Telescopes Large and Small. Astrophysics and Space Science Library, 2017, , 333-358.	2.7	2

#	Article	IF	CITATIONS
109	LEGA-C: Analysis of Dynamical Masses from Ionized Gas and Stellar Kinematics at z â^1⁄4 0.8. Astrophysical Journal, 2022, 928, 126.	4.5	2
110	A Giant Shell of Ionized Gas Discovered near M82 with the Dragonfly Spectral Line Mapper Pathfinder. Astrophysical Journal, 2022, 927, 136.	4.5	2
111	E+A galaxies in intermediate redshift clusters. Proceedings of the International Astronomical Union, 2004, 2004, .	0.0	1
112	Probing Galactic Outskirts with Dragonfly. Proceedings of the International Astronomical Union, 2016, 11, 137-146.	0.0	1
113	The Spitzer Warm Mission: Prospects for Studies of the Distant Universe. AIP Conference Proceedings, 2007, , .	0.4	0
114	Hα Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass. Proceedings of the International Astronomical Union, 2012, 8, 91-91.	0.0	0
115	Which Galaxy Property Best Predicts Quiescence?. Proceedings of the International Astronomical Union, 2012, 8, 177-177.	0.0	0
116	An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Proceedings of the International Astronomical Union, 2019, 15, 99-102.	0.0	0