

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6358964/publications.pdf Version: 2024-02-01

#	Article	IF	Citations
1	Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 2015, 523, 576-579.	27.8	1,476
2	Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy and Environmental Science, 2015, 8, 922-931.	30.8	541
3	High-Temperature Dielectric Materials for Electrical Energy Storage. Annual Review of Materials Research, 2018, 48, 219-243.	9.3	540
4	High Energy and Power Density Capacitors from Solutionâ€Processed Ternary Ferroelectric Polymer Nanocomposites. Advanced Materials, 2014, 26, 6244-6249.	21.0	448
5	Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nature Communications, 2013, 4, 2845.	12.8	382
6	Highâ€Energyâ€Density Dielectric Polymer Nanocomposites with Trilayered Architecture. Advanced Functional Materials, 2017, 27, 1606292.	14.9	338
7	Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9995-10000.	7.1	317
8	Multicomponent Hierarchical Cuâ€Doped NiCo‣DH/CuO Double Arrays for Ultralong‣ife Hybrid Fiber Supercapacitor. Advanced Functional Materials, 2019, 29, 1809004.	14.9	313
9	Highâ€Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable Highâ€Temperature Dielectric Materials. Advanced Materials, 2017, 29, 1701864.	21.0	270
10	Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nature Communications, 2020, 11, 3919.	12.8	268
11	A Scalable, Highâ€Throughput, and Environmentally Benign Approach to Polymer Dielectrics Exhibiting Significantly Improved Capacitive Performance at High Temperatures. Advanced Materials, 2018, 30, e1805672.	21.0	260
12	High Energy Density Polymer Dielectrics Interlayered by Assembled Boron Nitride Nanosheets. Advanced Energy Materials, 2019, 9, 1901826.	19.5	249
13	Defectâ€Rich Soft Carbon Porous Nanosheets for Fast and Highâ€Capacity Sodiumâ€Ion Storage. Advanced Energy Materials, 2019, 9, 1803260.	19.5	214
14	Ferroelectric Polymers and Their Energyâ€Related Applications. Macromolecular Chemistry and Physics, 2016, 217, 1228-1244.	2.2	193
15	Ferroelectric Polymer Nanocomposites for Roomâ€Temperature Electrocaloric Refrigeration. Advanced Materials, 2015, 27, 1450-1454.	21.0	192
16	Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nature Nanotechnology, 2019, 14, 151-155.	31.5	169
17	Highâ€Energy Storage Performance of (Pb _{0.87} Ba _{0.1} La _{0.02})(Zr _{0.68} Sn _{0.24} Ti _{0.0 Antiferroelectric Ceramics Fabricated by the Hotâ€Press Sintering Method. Journal of the American Ceramic Society. 2015. 98. 1175-1181.}	08)	O ₃₁₆₈
18	Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates. ACS Nano, 2015, 9, 7164-7174.	14.6	164

 \cap

Qi Li

#	Article	IF	CITATIONS
19	Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Materials, 2020, 28, 255-263.	18.0	159
20	Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics. Composites Science and Technology, 2017, 142, 139-144.	7.8	153
21	A Hybrid Material Approach Toward Solutionâ€Processable Dielectrics Exhibiting Enhanced Breakdown Strength and High Energy Density. Advanced Functional Materials, 2015, 25, 3505-3513.	14.9	152
22	Laser Direct Writing of Ultrahigh Sensitive SiCâ€Based Strain Sensor Arrays on Elastomer toward Electronic Skins. Advanced Functional Materials, 2019, 29, 1806786.	14.9	147
23	Relaxor Ferroelectricâ€Based Electrocaloric Polymer Nanocomposites with a Broad Operating Temperature Range and High Cooling Energy. Advanced Materials, 2015, 27, 2236-2241.	21.0	143
24	Field-dependent charging phenomenon of HVDC spacers based on dominant charge behaviors. Applied Physics Letters, 2019, 114, .	3.3	141
25	Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02) (Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics. Ceramics International, 2014, 40, 5455-5460.	4.8	129
26	Understanding surface charge accumulation and surface flashover on spacers in compressed gas insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25, 1152-1166.	2.9	122
27	Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors. Journal of Materials Chemistry C, 2017, 5, 11092-11099.	5.5	112
28	Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage. Energy, 2014, 76, 385-389.	8.8	111
29	Toward Wearable Cooling Devices: Highly Flexible Electrocaloric Ba _{0.67} Sr _{0.33} TiO ₃ Nanowire Arrays. Advanced Materials, 2016, 28, 4811-4816.	21.0	101
30	Thickness dependence of the properties of epitaxial MgB2 thin films grown by hybrid physical-chemical vapor deposition. Applied Physics Letters, 2003, 82, 4319-4321.	3.3	98
31	Solvent-free Fluids Based on Rhombohedral Nanoparticles of Calcium Carbonate. Journal of the American Chemical Society, 2009, 131, 9148-9149.	13.7	93
32	Understanding of Relaxor Ferroelectric Behavior of Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 Td 2731-2739.	(fluorideâ 4.8	€"trifluoroet 93
33	Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Materials, 2021, 42, 445-453.	18.0	91
34	Improved Energy Storage Properties Accompanied by Enhanced Interface Polarization in Annealed Microwave‧intered BST. Journal of the American Ceramic Society, 2015, 98, 3212-3222.	3.8	90
35	Novel HVDC Spacers by Adaptively Controlling Surface Charges – Part I: Charge Transport and Control Strategy. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25, 1238-1247.	2.9	89
36	Propertyâ^'Structure Relationship of Nanoscale Ionic Materials Based on Multiwalled Carbon Nanotubes, ACS Nano, 2010, 4, 5797-5806.	14.6	86

#	Article	IF	CITATIONS
37	Acid-Interface Engineering of Carbon Nanotube/Elastomers with Enhanced Sensitivity for Stretchable Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 37760-37766.	8.0	83
38	Direct Detection of Local Electric Polarization in the Interfacial Region in Ferroelectric Polymer Nanocomposites. Advanced Materials, 2019, 31, e1807722.	21.0	81
39	Suppression of energy dissipation and enhancement of breakdown strength in ferroelectric polymer–graphene percolative composites. Journal of Materials Chemistry C, 2013, 1, 7034.	5.5	78
40	Charge cluster triggers unpredictable insulation surface flashover in pressurized SF ₆ . Journal Physics D: Applied Physics, 2021, 54, 015308.	2.8	76
41	Polymer nanocomposites with high energy density and improved charge–discharge efficiency utilizing hierarchically-structured nanofillers. Journal of Materials Chemistry A, 2020, 8, 6576-6585.	10.3	74
42	3.0 V High Energy Density Symmetric Sodium-Ion Battery: Na ₄ V ₂ (PO ₄) ₃ â^¥Na ₃ V ₂ (PO <sub ACS Applied Materials & Interfaces, 2018, 10, 10022-10028.</sub 	>4 s/s ub>)	<s¤b>3</s
43	Selfâ€Healable Polymer Nanocomposites Capable of Simultaneously Recovering Multiple Functionalities. Advanced Functional Materials, 2016, 26, 3524-3531.	14.9	69
44	Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance. Energy Conversion and Management, 2013, 75, 482-487.	9.2	65
45	Ternary PVDF-based terpolymer nanocomposites with enhanced energy density and high power density. Composites Part A: Applied Science and Manufacturing, 2018, 109, 597-603.	7.6	64
46	Autonomous Self-Healing of Electrical Degradation in Dielectric Polymers Using In Situ Electroluminescence. Matter, 2020, 2, 451-463.	10.0	63
47	Fluxible Monodisperse Quantum Dots with Efficient Luminescence. Angewandte Chemie - International Edition, 2010, 49, 9943-9946.	13.8	60
48	Novel HVDC spacers by adaptively controlling surface charges – part ii: experiment. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25, 1248-1258.	2.9	55
49	General Oriented Synthesis of Precise Carbon-Confined Nanostructures by Low-Pressure Vapor Superassembly and Controlled Pyrolysis. Nano Letters, 2017, 17, 7773-7781.	9.1	53
50	Temperature dependent electrical properties of thermoplastic polypropylene nanocomposites for HVDC cable insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 1596-1604.	2.9	52
51	Flexible Ionic Diodes for Lowâ€Frequency Mechanical Energy Harvesting. Advanced Energy Materials, 2017, 7, 1601983.	19.5	51
52	Surfaceâ€modification effect of MgO nanoparticles on the electrical properties of polypropylene nanocomposite. High Voltage, 2020, 5, 249-255.	4.7	51
53	Polypropylene-based ternary nanocomposites for recyclable high-voltage direct-current cable insulation. Composites Science and Technology, 2018, 165, 168-174.	7.8	48
54	High Energy Density and Breakdown Strength from Î ² and Î ³ Phases in Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5 8.0	60 67 Td (fluoi 47

4 6, 18981-18988.

Qi Li

#	Article	IF	CITATIONS
55	NiO hierarchical hollow nanofibers as high-performance supercapacitor electrodes. RSC Advances, 2015, 5, 96205-96212.	3.6	47
56	Facile template-free synthesis of uniform carbon-confined V ₂ O ₃ hollow spheres for stable and fast lithium storage. Journal of Materials Chemistry A, 2018, 6, 6220-6224.	10.3	47
57	Wearable Textileâ€Based Coâ^'Zn Alkaline Microbattery with High Energy Density and Excellent Reliability. Small, 2020, 16, e2000293.	10.0	47
58	Selfâ€Healing of Electrical Damage in Polymers. Advanced Science, 2020, 7, 2002131.	11.2	46
59	Ultrahigh-energy-density dielectric materials from ferroelectric polymer/glucose all-organic composites with a cross-linking network of hydrogen bonds. Energy Storage Materials, 2022, 49, 339-347.	18.0	46
60	Design, synthesis and processing of PVDFâ€based dielectric polymers. IET Nanodielectrics, 2018, 1, 80-91.	4.1	43
61	Suppression of elevated temperature space charge accumulation in polypropylene/elastomer blends by deep traps induced by surface-modified ZnO nanoparticles. Composites Science and Technology, 2017, 153, 103-110.	7.8	42
62	Origins and effects of deep traps in functional group grafted polymeric dielectric materials. Journal Physics D: Applied Physics, 2020, 53, 475301.	2.8	42
63	Enhanced pyroelectric properties of porous Ba0.67Sr0.33TiO3 ceramics fabricated with carbon nanotubes. Journal of Alloys and Compounds, 2015, 636, 93-96.	5.5	41
64	Controlling Chain Conformations of Highâ€ <i>k</i> Fluoropolymer Dielectrics to Enhance Charge Mobilities in Rubrene Singleâ€Crystal Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 10095-10102.	21.0	38
65	Polymer nanocomposites for high-energy-density capacitor dielectrics: Fundamentals and recent progress. IEEE Electrical Insulation Magazine, 2020, 36, 7-28.	0.8	38
66	Novel HVDC spacers by adaptively controlling surface charges – part iii: industrialization prospects. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25, 1259-1266.	2.9	36
67	Self-healing of internal damage in mechanically robust polymers utilizing a reversibly convertible molecular network. Journal of Materials Chemistry A, 2021, 9, 15975-15984.	10.3	34
68	Towards multicaloric effect with ferroelectrics. Physical Review B, 2016, 94, .	3.2	33
69	Grading of electric field distribution of AC polymeric outdoor insulators using field grading material. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 1253-1260.	2.9	33
70	Solid-state cooling by elastocaloric polymer with uniform chain-lengths. Nature Communications, 2022, 13, 9.	12.8	33
71	Mapping the Space Charge at Nanoscale in Dielectric Polymer Nanocomposites. ACS Applied Materials & Interfaces, 2020, 12, 53425-53434.	8.0	32
72	Improved High-Temperature Electrical Properties of Polymeric Material by Grafting Modification. ACS Sustainable Chemistry and Engineering, 2022, 10, 8685-8693.	6.7	32

#	Article	IF	CITATIONS
73	A binary solvent system for improved liquid phase exfoliation of pristine graphene materials. Carbon, 2015, 94, 405-411.	10.3	31
74	Micrometerâ€Sized Porous Fe ₂ N/C Bulk for Highâ€Arealâ€Capacity and Stable Lithium Storage. Small, 2019, 15, e1803572.	10.0	31
75	Self-healing of electrical damage in thermoset polymers <i>via</i> anionic polymerization. Journal of Materials Chemistry C, 2020, 8, 6025-6033.	5.5	31
76	Polyoxomolybdate-derived carbon-encapsulated multicomponent electrocatalysts for synergistically boosting hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 17874-17881.	10.3	30
77	Selfâ€Unfolded Graphene Sheets. Chemistry - A European Journal, 2012, 18, 7055-7059.	3.3	29
78	Biocompatible and Flexible Hydrogel Diodeâ€Based Mechanical Energy Harvesting. Advanced Materials Technologies, 2017, 2, 1700118.	5.8	29
79	Recent Advances in Nanowireâ€Based, Flexible, Freestanding Electrodes for Energy Storage. Chemistry - A European Journal, 2018, 24, 18307-18321.	3.3	29
80	Fluxible Nanoclusters of Fe ₃ O ₄ Nanocrystal-Embedded Polyaniline by Macromolecule-Induced Self-Assembly. Langmuir, 2013, 29, 10223-10228.	3.5	28
81	Facile preparation and thermal performances of hexadecanol/crosslinked polystyrene core/shell nanocapsules as phase change material. Polymer Composites, 2014, 35, 2154-2158.	4.6	28
82	Tuning the potential distribution of AC cable terminals by stress cone of nonlinear conductivity material. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 2686-2693.	2.9	28
83	Multilayered ferroelectric polymer composites with high energy density at elevated temperature. Composites Science and Technology, 2021, 202, 108594.	7.8	28
84	A carbon black derivative with liquid behavior. Carbon, 2011, 49, 1047-1051.	10.3	27
85	Synergistic effect of ZnO microspherical varistors and carbon fibers on nonlinear conductivity and mechanical properties of the silicone rubber-based material. Composites Science and Technology, 2017, 150, 187-193.	7.8	27
86	Flexible microstructured pressure sensors: design, fabrication and applications. Nanotechnology, 2022, 33, 322002.	2.6	27
87	The effect of the addition of carbon nanotube fluids to a polymeric matrix to produce simultaneous reinforcement and plasticization. Carbon, 2012, 50, 2056-2060.	10.3	26
88	Synthesis of Sandwich-Like Nanostructure Fillers and Their Use in Different Types of Thermal Composites. ACS Applied Materials & Interfaces, 2019, 11, 40694-40703.	8.0	26
89	Laser Direct Writing of Flexible Sensor Arrays Based on Carbonized Carboxymethylcellulose and Its Composites for Simultaneous Mechanical and Thermal Stimuli Detection. ACS Applied Materials & Interfaces, 2021, 13, 10171-10180.	8.0	24
90	Smart dielectric materials for next-generation electrical insulation. , 2022, 1, 19-49.		20

#	Article	IF	CITATIONS
91	Effect of Mn ₃ O ₄ nanoparticle composition and distribution on graphene as a potential hybrid anode material for lithium-ion batteries. RSC Advances, 2016, 6, 33022-33030.	3.6	19
92	Comparisons of different polypropylene copolymers as potential recyclable HVDC cable insulation materials. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 674-680.	2.9	19
93	Globally reinforced mechanical, electrical, and thermal properties of nonlinear conductivity composites by surface treatment of varistor microspheres. Composites Science and Technology, 2019, 175, 151-157.	7.8	19
94	Large energy density in Ba doped Pb0.97La0.02(Zr0.65Sn0.3Ti0.05)O3 antiferroelectric ceramics with improved temperature stability. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 744-748.	2.9	17
95	How nonlinear V-I characteristics of single ZnO microvaristor influences the performance of its silicone rubber composite. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25, 623-630.	2.9	17
96	Different microscopic features of AC and DC electrical trees in insulating polymer. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25, 2259-2265.	2.9	17
97	Optimal design of high temperature metalized thin-film polymer capacitors: A combined numerical and experimental method. Journal of Power Sources, 2017, 357, 149-157.	7.8	16
98	Nonlinear effective permittivity of field grading composite dielectrics. Journal Physics D: Applied Physics, 2018, 51, 075304.	2.8	16
99	Defect-targeted self-healing of multiscale damage in polymers. Nanoscale, 2020, 12, 3605-3613.	5.6	16
100	Simulation and design of 500 kV DC cable terminal accessory based on ZnO varistor microsphere composites. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 10-16.	2.9	16
101	Metal–Support Interactions within a Dual-Site Pd/YMn ₂ O ₅ Catalyst during CH ₄ Combustion. ACS Catalysis, 2022, 12, 4430-4439.	11.2	16
102	Selfâ€5uspended Polyaniline Doped with a Protonic Acid Containing a Polyethylene Glycol Segment. Chemistry - an Asian Journal, 2011, 6, 2920-2924.	3.3	15
103	Excellent Energy Storage Properties Achieved in Sodium Niobate-Based Relaxor Ceramics through Doping Tantalum. ACS Applied Materials & Interfaces, 2022, 14, 32218-32226.	8.0	15
104	Comparisons of different polypropylene copolymers as potential recyclable HVDC cable insulation materials. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 674-680.	2.9	12
105	Space charge behavior in silicone rubber from in-service aged HVDC composite insulators. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 843-850.	2.9	12
106	General and precise carbon confinement of functional nanostructures derived from assembled metal–phenolic networks for enhanced lithium storage. Journal of Materials Chemistry A, 2018, 6, 18605-18614.	10.3	11
107	Polymer Nanocomposites with High Energy Density Utilizing Oriented Nanosheets and High-Dielectric-Constant Nanoparticles. Materials, 2021, 14, 4780.	2.9	9
108	Dielectric Properties Improvement of Grafting-Modified Polypropylene by Silane for HVDC Cable Insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28, 2004-2010.	2.9	9

Qi Li

#	Article	IF	CITATIONS
109	A Dielectric Polymer/Metal Oxide Nanowire Composite for Self-Adaptive Charge Release. Nano Letters, 2022, 22, 5167-5174.	9.1	9
110	Solvent-free zirconia nanofluids/silica single-layer multifunctional hybrid coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464, 26-32.	4.7	8
111	Electroluminescence and electrical degradation of insulating polymers at electrode interfaces under divergent fields. Journal of Applied Physics, 2018, 123, .	2.5	8
112	Synergistic Effects of a CeO ₂ /SmMn ₂ O ₅ –H Diesel Oxidation Catalyst Induced by Acid-Selective Dissolution Drive the Catalytic Oxidation Reaction. ACS Applied Materials & Interfaces, 2022, 14, 2860-2870.	8.0	8
113	Insight into the Experimental Error in the Mapping of Electrical Properties with Electrostatic Force Microscopy. Langmuir, 2022, 38, 8534-8544.	3.5	8
114	Self-assembled long-chain organic ion grafted carbon dot ionic nanohybrids with liquid-like behavior and dual luminescence. New Journal of Chemistry, 2013, 37, 3857.	2.8	7
115	Highly reflective and adhesive surface of aluminized polyvinyl chloride film by vacuum evaporation. Applied Surface Science, 2014, 311, 541-548.	6.1	7
116	Polymer Dielectrics: A Scalable, Highâ€Throughput, and Environmentally Benign Approach to Polymer Dielectrics Exhibiting Significantly Improved Capacitive Performance at High Temperatures (Adv.) Tj ETQq0 0 0 r	gBT2‡Q0verl	lock 10 Tf 50 4
117	Luminescence reveals micro discharge as a potential triggering factor for surface flashover. Journal Physics D: Applied Physics, 2020, 53, 445103.	2.8	7
118	Flexible substrates enabled highly integrated patterns with submicron precision towardÂintrinsically stretchable circuits. SmartMat, 2022, 3, 503-512.	10.7	6
119	Self-suspended polyaniline containing self-dissolved lyotropic liquid crystal with electrical conductivity. Journal of Polymer Science Part A, 2016, 54, 3578-3582.	2.3	4
120	Solvent-free Synthesis of Flowable Carbon Clusters with Customizable Size and Tunable Optical Performance. Chinese Journal of Chemistry, 2013, 31, 1513-1518.	4.9	3
121	Boron Nitride Nanosheets: High Energy Density Polymer Dielectrics Interlayered by Assembled Boron Nitride Nanosheets (Adv. Energy Mater. 36/2019). Advanced Energy Materials, 2019, 9, 1970140.	19.5	3
122	Space charge behavior in silicone rubber from in-service aged HVDC composite insulators. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 843-850.	2.9	3
123	Nanoscale mapping of electric polarizability in a heterogeneous dielectric material with surface irregularities. Nanotechnology, 2021, 32, 505711.	2.6	3
124	High-temperature and high-energy-density polymer dielectrics for capacitive energy storage. , 2018, , .		2
125	The Dielectric Properties of PP Nanocomposites Doped with Mesoporous Silica Nanoparticles. , 2018, , .		2
126	The leakage current characterization on the electrical tree aging of polymer. , 2019, , .		2

#	Article	IF	CITATIONS
127	Water Dispersible Graphene Sheets Produced from Unassembled Graphene–Polyaniline Nanohybrids. Nano, 2015, 10, 1550003.	1.0	1
128	Ferroelectric Nanocomposites: Direct Detection of Local Electric Polarization in the Interfacial Region in Ferroelectric Polymer Nanocomposites (Adv. Mater. 21/2019). Advanced Materials, 2019, 31, 1970154.	21.0	1
129	Polymer Dielectrics forÂFilm Capacitors Applied in HVDC Transmission. , 2021, , 607-626.		1
130	Gradient structure design of zinc oxide varistor microsphere composites for efficient electric field grading. Composites Part A: Applied Science and Manufacturing, 2021, , 106731.	7.6	1
131	Polymer Nanocomposites for Power Energy Storage. , 2016, , 139-163.		0
132	High-temperature and high-energy-density polymer dielectrics for capacitive energy storage. , 2018, , .		0
133	Effect of Film Processing on the Capacitive Performance of Poly (Vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50	502 Td (Fluc
134	Polymer Nanocomposites with High Energy Density and Breakdown Strength utilizing Oriented BNNS. , 2020, , .		0
135	Modeling of Microcapsule-based Self-healing Material to Achieve Better Recovering from Electrical Tree Defects. , 2020, , .		Ο