
Tai Thien Huynh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6358106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured Ti _{0.7} Mo _{0.3} O ₂ Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2011, 133, 11716-11724.	13.7	371
2	Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy and Environmental Science, 2011, 4, 4194.	30.8	99
3	Metal-Organic Framework MIL-53(Fe) as an Adsorbent for Ibuprofen Drug Removal from Aqueous Solutions: Response Surface Modeling and Optimization. Journal of Chemistry, 2019, 2019, 1-11.	1.9	46
4	Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support. Nano Energy, 2012, 1, 687-695.	16.0	40
5	Synthesis of Ti0.7Mo0.3O2 supported-Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction. Applied Catalysis B: Environmental, 2014, 154-155, 183-189.	20.2	33
6	In Situ Spatial Charge Separation of an Ir@TiO ₂ Multiphase Photosystem toward Highly Efficient Photocatalytic Performance of Hydrogen Production. Journal of Physical Chemistry C, 2020, 124, 16961-16974.	3.1	22
7	Platinum–Copper Bimetallic Nanodendritic Electrocatalyst on a TiO ₂ -Based Support for Methanol Oxidation in Alkaline Fuel Cells. ACS Applied Nano Materials, 2021, 4, 4983-4993.	5.0	22
8	Bimetallic PtIr nanoalloy on TiO ₂ -based solid solution oxide with enhanced oxygen reduction and ethanol electro-oxidation performance in direct ethanol fuel cells. Catalysis Science and Technology, 2021, 11, 1571-1579.	4.1	21
9	In Situ Confined Synthesis of Ti ₄ O ₇ Supported Platinum Electrocatalysts with Enhanced Activity and Stability for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 1155-1165.	3.7	20
10	Novel nanorod Ti0·7Ir0·3O2 prepared by facile hydrothermal process: A promising non-carbon support for Pt in PEMFCs. International Journal of Hydrogen Energy, 2019, 44, 2361-2371.	7.1	17
11	Synthesis and characterization the multifunctional nanostructures TixW1-xO2 (x = 0.5; 0.6; 0.7; 0.8) supports as robust non-carbon support for Pt nanoparticles for direct ethanol fuel cells. International Journal of Hydrogen Energy, 2021, 46, 24877-24890.	7.1	16
12	Superior CO-tolerance and stability toward alcohol electro-oxidation reaction of 1D-bimetallic platinum-cobalt nanowires on Tungsten-modified anatase TiO2 nanostructure. Fuel, 2020, 276, 118078.	6.4	16
13	Facile room-temperature fabrication of a silver–platinum nanocoral catalyst towards hydrogen evolution and methanol electro-oxidation. Materials Advances, 2022, 3, 1609-1616.	5.4	16
14	Boosting alcohol electro-oxidation reaction with bimetallic PtRu nanoalloys supported on robust Ti0.7W0.3O2 nanomaterial in direct liquid fuel cells. International Journal of Hydrogen Energy, 2021, 46, 16776-16786.	7.1	15
15	Wire-like Pt on mesoporous Ti0.7W0.3O2 Nanomaterial with Compelling Electro-Activity for Effective Alcohol Electro-Oxidation. Scientific Reports, 2019, 9, 14791.	3.3	13
16	High conductivity of novel Ti0.9Ir0.1O2 support for Pt as a promising catalyst for low-temperature fuel cell applications. International Journal of Hydrogen Energy, 2019, 44, 20944-20952.	7.1	13
17	High conductivity and surface area of Ti0.7W0.3O2 mesoporous nanostructures support for Pt toward enhanced methanol oxidation in DMFCs. International Journal of Hydrogen Energy, 2019, 44, 20933-20943.	7.1	13
18	Advanced Nanoelectrocatalyst of Pt Nanoparticles Supported on Robust Ti _{0.7} Ir _{0.3} O ₂ as a Promising Catalyst for Fuel Cells. Industrial & Engineering Chemistry Research, 2019, 58, 675-684.	3.7	13

Ται Τηιέν Ηυγνή

#	Article	IF	CITATIONS
19	One-pot production of a sea urchin-like alloy electrocatalyst for the oxygen electro-reduction reaction. Dalton Transactions, 2022, 51, 11427-11436.	3.3	12
20	One-Step Hydrothermal Synthesis of a New Nanostructure Ti ₀ ₇ Ir ₀ 3O ₂ for Enhanced Electrical Conductivity: The Effect of pH on the Formation of Nanostructure. Journal of Nanoscience and Nanotechnology, 2018, 18, 6928-6933.	0.9	11
21	Advanced Ti _{0.7} W _{0.3} O ₂ Nanoparticles Prepared via Solvothermal Process Using Titanium Tetrachloride and Tungsten Hexachloride as Precursors. Journal of Nanoscience and Nanotechnology, 2018, 18, 7177-7182.	0.9	11
22	One-step heating hydrothermal of iridium-doped cubic perovskite strontium titanate towards hydrogen evolution. Materials Letters, 2021, 282, 128686.	2.6	11
23	Preparation and characterization of indium doped tin oxide (ITO) via a non-aqueous sol-gel. Molecular Crystals and Liquid Crystals, 2016, 635, 32-39.	0.9	9
24	Preparation and characterization of high-dispersed pt/c nano-electrocatalysts for fuel cell applications Science and Technology, 2016, 54, 472.	0.2	9
25	A High-Performing Nanostructured Ir Doped-TiO2 for Efficient Photocatalytic Degradation of Gaseous Toluene. Inorganics, 2022, 10, 29.	2.7	9
26	Study on Domestic Wastewater Treatment of the Horizontal Subsurface Flow Wetlands (HSSF-CWs) Using Brachiaria mutica. Waste and Biomass Valorization, 2020, 11, 5627-5634.	3.4	7
27	Tungsten-doped titanium-dioxide-supported low-Pt-loading electrocatalysts for the oxidation reaction of ethanol in acidic fuel cells. Comptes Rendus Chimie, 2019, 22, 829-837.	0.5	6
28	Highly stable Pt/ITO catalyst as a promising electrocatalyst for direct methanol fuel cells. Comptes Rendus Chimie, 2019, 22, 838-843.	0.5	6
29	Rutile Ti _{0.9} Ir _{0.1} O ₂ ‣upported Low Pt Loading: An Efficient Electrocatalyst for Ethanol Electrochemical Oxidation in Acidic Media. Energy Technology, 2020, 8, 2000431.	3.8	6
30	Comparison the Rapid Microwave-Assisted Polyol Route and Modified Chemical Reduction Methods to Synthesize the Pt Nanoparticles on the Ti _{0.7} W _{0.3} O ₂ Support. Solid State Phenomena, 2018, 279, 181-186.	0.3	4
31	Assessing the Ability to Treat industrial Wastewater by Constructed Wetland Model Using the Brachiaria mutica. Waste and Biomass Valorization, 2020, 11, 5615-5626.	3.4	4
32	Effect of Gallium Source Material on the Transparent Conducting Properties of Ga:ZnO Thin Films Through Metalorganic Chemical Vapor Deposition. Molecular Crystals and Liquid Crystals, 2015, 623, 433-443.	0.9	3
33	Synthesis the New Nanostructure Ti _{0.7} Ir _{0.3} O ₂ via Low Temperature Hydrothermal Process. Applied Mechanics and Materials, 0, 876, 64-70.	0.2	3
34	Investigation of iridium composition in Ti1–Ir O2 (x = 0.1, 0.2, 0.3) nanostructures as potential supports for platinum in methanol electro-oxidation. Comptes Rendus Chimie, 2019, 22, 844-854.	0.5	3
35	High Conductivity and Surface Area of Mesoporous Ti0.7W0.3O2 Materials as Promising Catalyst Support for Pt in Proton-Exchange Membrane Fuel Cells. Journal of Nanoscience and Nanotechnology, 2019, 19, 877-881.	0.9	3
36	Advanced nanostructure Ti0.7In0.3O2 support enhances electron transfer to Pt: Used as high performance catalyst for oxygen reduction reaction. Molecular Crystals and Liquid Crystals, 2016, 635, 25-31.	0.9	2

#	Article	IF	CITATIONS
37	Preparation and Characterization of Advanced PtRu/Ti _{0.7} Mo _{0.7} O ₂ Catalysts for Direct Methanol Fuel Cells. Applied Mechanics and Materials, 2018, 876, 57-63.	0.2	2
38	Nanostructured Ti ₀ ₇ Mo ₀ ₃ O ₂ as Efficient Non-Carbon Support for PtRu Catalysts in Direct Methanol Fuel Cells. Journal of Nanoscience and Nanotechnology, 2018, 18, 6934-6941.	0.9	2
39	Growth of Vertically-Aligned GaN Nanowires by Metal Organic Chemical Vapor Deposition Utilizing Trimethygallium and Tertiarybutylhydrazine. Molecular Crystals and Liquid Crystals, 2015, 623, 444-450.	0.9	1
40	Synthesis the New Nanostructure Ti _{0.7} W _{0.3} O ₂ via Low Temperature Solvothermal Process. Applied Mechanics and Materials, 0, 876, 84-90.	0.2	1