Cheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6357864/publications.pdf Version: 2024-02-01

CHENCLI

#	Article	IF	CITATIONS
1	Seasonal Variations of Chemical Species and Haze in Titan's Upper Atmosphere. Planetary Science Journal, 2022, 3, 130.	3.6	0
2	Jupiter's Temperature Structure: A Reassessment of the Voyager Radio Occultation Measurements. Planetary Science Journal, 2022, 3, 159.	3.6	11
3	Constraints on the Latitudinal Profile of Jupiter's Deep Jets. Geophysical Research Letters, 2021, 48, e2021GL092912.	4.0	13
4	Jupiter's Overturning Circulation: Breaking Waves Take the Place of Solid Boundaries. Geophysical Research Letters, 2021, 48, e2021GL095756.	4.0	11
5	Evidence for Multiple Ferrel‣ike Cells on Jupiter. Geophysical Research Letters, 2021, 48, e2021GL095651.	4.0	18
6	Jupiter's Temperate Belt/Zone Contrasts Revealed at Depth by Juno Microwave Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006858.	3.6	17
7	The depth of Jupiter's Great Red Spot constrained by Juno gravity overflights. Science, 2021, 374, 964-968.	12.6	18
8	Microwave observations reveal the deep extent and structure of Jupiter's atmospheric vortices. Science, 2021, 374, 968-972.	12.6	23
9	Radiative-dynamical Simulation of Jupiter's Stratosphere and Upper Troposphere. Astrophysical Journal, 2021, 921, 174.	4.5	2
10	Angular Dependence and Spatial Distribution of Jupiter's Centimeterâ€Wave Thermal Emission From Juno's Microwave Radiometer. Earth and Space Science, 2020, 7, e2020EA001254.	2.6	12
11	Residual Study: Testing Jupiter Atmosphere Models Against Juno MWR Observations. Earth and Space Science, 2020, 7, e2020EA001229.	2.6	3
12	Storms and the Depletion of Ammonia in Jupiter: II. Explaining the Juno Observations. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006404.	3.6	24
13	Jupiter's Equatorial Plumes and Hot Spots: Spectral Mapping from Gemini/TEXES and Juno/MWR. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006399.	3.6	13
14	Modeling the stability of polygonal patterns of vortices at the poles of Jupiter as revealed by the <i>Juno</i> spacecraft. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24082-24087.	7.1	21
15	The water abundance in Jupiter's equatorial zone. Nature Astronomy, 2020, 4, 609-616.	10.1	96
16	A Global Nonhydrostatic Atmospheric Model with a Mass- and Energy-conserving Vertically Implicit Correction (VIC) Scheme. Astrophysical Journal, 2020, 898, 130.	4.5	8
17	Earth as an Exoplanet: A Two-dimensional Alien Map. Astrophysical Journal Letters, 2019, 882, L1.	8.3	27
18	Retrieval of Chemical Abundances in Titan's Upper Atmosphere From Cassini UVIS Observations With Pointing Motion. Earth and Space Science, 2019, 6, 1057-1066.	2.6	7

CHENG LI

#	Article	IF	CITATIONS
19	Simulating Nonhydrostatic Atmospheres on Planets (SNAP): Formulation, Validation, and Application to the Jovian Atmosphere. Astrophysical Journal, Supplement Series, 2019, 240, 37.	7.7	27
20	Moist Adiabats with Multiple Condensing Species: A New Theory with Application to Giant-Planet Atmospheres. Journals of the Atmospheric Sciences, 2018, 75, 1063-1072.	1.7	17
21	A high-performance atmospheric radiation package: With applications to the radiative energy budgets of giant planets. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 217, 353-362.	2.3	26
22	Mapping of Jupiter's tropospheric NH 3 abundance using ground-based IRTF/TEXES observations at 5â€ [−] µm. Icarus, 2018, 314, 106-120.	2.5	8
23	Prevalent lightning sferics at 600 megahertz near Jupiter's poles. Nature, 2018, 558, 87-90.	27.8	52
24	Multipleâ€wavelength sensing of Jupiter during the Juno mission's first perijove passage. Geophysical Research Letters, 2017, 44, 4607-4614.	4.0	14
25	The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 2017, 44, 5317-5325.	4.0	108
26	Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 2017, 356, 821-825.	12.6	229
27	MWR: Microwave Radiometer for the Juno Mission to Jupiter. Space Science Reviews, 2017, 213, 139-185.	8.1	64
28	Implications of the ammonia distribution on Jupiter from 1 to 100Âbars as measured by the Juno microwave radiometer. Geophysical Research Letters, 2017, 44, 7676-7685.	4.0	31
29	VERTICAL DISTRIBUTION OF <i>C</i> ₃ -HYDROCARBONS IN THE STRATOSPHERE OF TITAN. Astrophysical Journal Letters, 2015, 803, L19.	8.3	25
30	Moist convection in hydrogen atmospheres and the frequency of Saturn's giant storms. Nature Geoscience, 2015, 8, 398-403.	12.9	68
31	STABILITY OF CO ₂ ATMOSPHERES ON DESICCATED M DWARF EXOPLANETS. Astrophysical Journal, 2015, 806, 249.	4.5	104
32	A non-monotonic eddy diffusivity profile of Titan's atmosphere revealed by Cassini observations. Planetary and Space Science, 2014, 104, 48-58.	1.7	23