B Chethan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6357831/publications.pdf

Version: 2024-02-01

567281 752698 582 29 15 20 citations h-index g-index papers 29 29 29 325 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Carbon nanomaterial-based sensor safety in different fields. , 2022, , 315-332.		2
2	Nanostructures for humidity sensing and photocatalytic applications. , 2021, , 327-359.		1
3	Structural and AC Electrical Properties of Tantalum Disulfide Embedded Polyaniline Composites. Journal of Materials Engineering and Performance, 2021, 30, 1885-1894.	2.5	10
4	Role of dysprosium in enhancing the humidity sensing performance in manganese zinc ferrites for sensor applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 23554-23565.	2.2	17
5	Rapid response in recovery time, humidity sensing behavior and magnetic properties of rare earth(Dy) Tj ETQq1 1	0,784314	rgBT /Overla
6	Effect of titanium dioxide in enhancing the humidity sensing performance of polypyrrole. AIP Conference Proceedings, 2020, , .	0.4	0
7	Effect of chromium oxide in improving humidity sensing properties of polypyrrole/chromium oxide composite. AIP Conference Proceedings, 2020, , .	0.4	O
8	Enhanced humidity sensing and magnetic properties of bismuth doped copper ferrites for humidity sensor applications. Journal of Alloys and Compounds, 2020, 848, 156577.	5.5	31
9	Room temperature AC electrical properties of polypyrrole/chromium oxide composite. AIP Conference Proceedings, 2020, , .	0.4	O
10	Enhancement of the humidity sensing performance of polypyrrole: Role of green tea extracted copper nanoparticles. AIP Conference Proceedings, 2020, , .	0.4	0
11	Tantalum disulfide as Room Temperature Operable Efficient Humidity Sensor. , 2020, , .		2
12	Humidity sensing performance of hybrid nanorods of polyaniline-Yttrium oxide composite prepared by mechanical mixing method. Talanta, 2020, 215, 120906.	5 . 5	41
13	Alternating current response studies on polyaniline-neodymium oxide composites. AIP Conference Proceedings, 2020, , .	0.4	2
14	Enhanced humidity sensing performance of Samarium doped Lanthanum Aluminate at room temperature. Sensors and Actuators A: Physical, 2020, 304, 111903.	4.1	36
15	Structural, Optical and Electrical Properties of Ce Doped SnO2 Nanoparticles Prepared by Surfactant Assisted Gel Combustion Method. Journal of Nano- and Electronic Physics, 2020, 12, 04017-1-04017-6.	0.5	4
16	Polypyrrole–Tantalum disulfide composite: An efficient material for fabrication of room temperature operable humidity sensor. Sensors and Actuators A: Physical, 2019, 298, 111593.	4.1	43
17	A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature. Bulletin of Materials Science, 2019, 42, 1.	1.7	23
18	Polypyyrole based core-shell structured composite based humidity Sensor operable at room temperature. Sensors and Actuators B: Chemical, 2019, 296, 126639.	7.8	46

#	Article	lF	CITATION
19	Room temperature humidity sensing performance of polyaniline–holmium oxide composite. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	32
20	Polyaniline based stable humidity sensor operable at room temperature. Physica B: Condensed Matter, 2019, 561, 170-178.	2.7	62
21	Enhancing humidity sensing performance of polyaniline/water soluble graphene oxide composite. Talanta, 2019, 196, 337-344.	5.5	74
22	Effect of mechanical mixing method of preparation of polyaniline-transition metal oxide composites on DC conductivity and humidity sensing response. Journal of Materials Science: Materials in Electronics, 2018, 29, 7253-7261.	2.2	23
23	Role of molybdenum trioxide in enhancing the humidity sensing performance of magnesium ferrite/molybdenum trioxide composite. Inorganic Chemistry Communication, 2018, 98, 68-74.	3.9	17
24	Room temperature humidity sensor based on polyaniline-tungsten disulfide composite. AIP Conference Proceedings, 2018, , .	0.4	18
25	Structural and electrical properties of nickel substituted cadmium ferrite. AIP Conference Proceedings, 2018, , .	0.4	2
26	Alternating current response studies on nickel ferrite-niobium composite at room temperature. AlP Conference Proceedings, 2018, , .	0.4	1
27	Nickel substituted cadmium ferrite as room temperature operable humidity sensor. Sensors and Actuators A: Physical, 2018, 280, 466-474.	4.1	56
28	Enhanced Humidity Sensing Response in Eu3+-Doped Iron-Rich CuFe2O4: A Detailed Study of Structural, Microstructural, Sensing, and Dielectric Properties. , 0, , .		8
29	Humidity sensing behaviour of Rubidium-doped Magnesium ferrite for sensor applications. Journal of Materials Science: Materials in Electronics, 0 , 1 .	2.2	7