Xinping Ai

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6357751/xinping-ai-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

161 60 12,744 110 h-index g-index citations papers 11.8 6.79 167 14,950 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
161	A Solid-Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithium-Sulfur Batteries <i>Small</i> , 2022 , e2106144	11	2
160	Room-Temperature All-Solid-State Lithium Drganic Batteries Based on Sulfide Electrolytes and Organodisulfide Cathodes. <i>Advanced Energy Materials</i> , 2021 , 11, 2102962	21.8	6
159	Improved Initial Charging Capacity of Na-poor Na0.44MnO2 via Chemical Presodiation Strategy for Low-cost Sodium-ion Batteries. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 274-279	2.2	3
158	Ethylene Carbonate-Free Propylene Carbonate-Based Electrolytes with Excellent Electrochemical Compatibility for Li-Ion Batteries through Engineering Electrolyte Solvation Structure. <i>Advanced Energy Materials</i> , 2021 , 11, 2003905	21.8	19
157	Electrochemical Insight into the Sodium-Ion Storage Mechanism on a Hard Carbon Anode. <i>ACS Applied Materials & District Applied & District </i>	9.5	6
156	Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Li-Ion Batteries by Chemical Prelithiation of Graphite Anode. <i>Advanced Functional Materials</i> , 2021 , 31, 2101181	15.6	23
155	-Formed Artificial Solid Electrolyte Interphase for Boosting the Cycle Stability of Si-Based Anodes for Li-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 22505-22513	9.5	6
154	Metal-Ligand Interactions in Lithium-Rich Li2RhO3 Cathode Material Activate Bimodal Anionic Redox. <i>Advanced Energy Materials</i> , 2021 , 11, 2100892	21.8	3
153	An advanced low-cost cathode composed of graphene-coated Na2.4Fe1.8(SO4)3 nanograins in a 3D graphene network for ultra-stable sodium storage. <i>Journal of Energy Chemistry</i> , 2021 , 54, 564-570	12	5
152	Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5639-5647	13	11
151	A controllable thermal-sensitivity separator with an organicIhorganic hybrid interlayer for high-safety lithium-ion batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 2313-2319	7.8	3
150	Enabling stable and high-rate cycling of a Ni-rich layered oxide cathode for lithium-ion batteries by modification with an artificial Li+-conducting cathode-electrolyte interphase. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11623-11631	13	5
149	The underlying mechanism for reduction stability of organic electrolytes in lithium secondary batteries. <i>Chemical Science</i> , 2021 , 12, 9037-9041	9.4	5
148	Tunable Electrocatalytic Behavior of Sodiated MoS Active Sites toward Efficient Sulfur Redox Reactions in Room-Temperature Na-S Batteries. <i>Advanced Materials</i> , 2021 , 33, e2100229	24	23
147	Microstructure-Dependent Charge/Discharge Behaviors of Hollow Carbon Spheres and its Implication for Sodium Storage Mechanism on Hard Carbon Anodes. <i>Small</i> , 2021 , 17, e2102248	11	9
146	Metal/covalent-organic frameworks for electrochemical energy storage applications. <i>EcoMat</i> , 2021 , 3, e12133	9.4	8
145	Building a Thermal Shutdown Cathode for Li-Ion Batteries Using Temperature-Responsive Poly(3-Dodecylthiophene). <i>Energy Technology</i> , 2020 , 8, 2000365	3.5	11

(2019-2020)

144	Building a Cycle-Stable Fe-Si Alloy/Carbon Nanocomposite Anode for Li-Ion Batteries through a Covalent-Bonding Method. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 30503-30509	9.5	14
143	Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 12, 16411-16416	9.5	33
142	Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries. <i>ACS Applied Materials & Enhanced Initial Coulombic Efficiencies</i> , 2020 , 12, 17620-17627	9.5	39
141	A High-Performance Li-Mn-O Li-rich Cathode Material with Rhombohedral Symmetry via Intralayer Li/Mn Disordering. <i>Advanced Materials</i> , 2020 , 32, e2000190	24	48
140	Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal Anode 2020 , 2, 358-366		12
139	Efficient and Facile Electrochemical Process for the Production of High-Quality Lithium Hexafluorophosphate Electrolyte. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 32771-32777	9.5	1
138	Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte. <i>Informa</i> Materilly, 2020 , 2, 984-992	23.1	54
137	Ultralow-Strain Zn-Substituted Layered Oxide Cathode with Suppressed P2D2 Transition for Stable Sodium Ion Storage. <i>Advanced Functional Materials</i> , 2020 , 30, 1910327	15.6	54
136	Suppressing Voltage Fading of Li-Rich Oxide Cathode via Building a Well-Protected and Partially-Protonated Surface by Polyacrylic Acid Binder for Cycle-Stable Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1904264	21.8	50
135	Chemically Prelithiated Hard-Carbon Anode for High Power and High Capacity Li-Ion Batteries. <i>Small</i> , 2020 , 16, e1907602	11	52
134	Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent. <i>Chemical Communications</i> , 2020 , 56, 6559-6562	5.8	12
133	Surface Modification of Fe S /C Anode via Ultrathin Amorphous TiO Layer for Enhanced Sodium Storage Performance. <i>Small</i> , 2020 , 16, e2000745	11	10
132	Facile and reversible digestion and regeneration of zirconium-based metal-organic frameworks. <i>Communications Chemistry</i> , 2020 , 3,	6.3	11
131	A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. <i>Electrochimica Acta</i> , 2020 , 332, 135533	6.7	31
130	Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode. <i>Energy Storage Materials</i> , 2020 , 24, 635-643	19.4	80
129	A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. <i>Journal of Energy Chemistry</i> , 2020 , 44, 33-40	12	33
128	Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 1644-1652	20.1	31
127	Highly Selective and Pollution-Free Electrochemical Extraction of Lithium by a Polyaniline/Li Mn O Cell. <i>ChemSusChem</i> , 2019 , 12, 1361-1367	8.3	27

126	Polyaniline hollow nanofibers prepared by controllable sacrifice-template route as high-performance cathode materials for sodium-ion batteries. <i>Electrochimica Acta</i> , 2019 , 301, 352-358	6.7	25
125	Schwefel-basierte Elektroden mit Mehrelektronenreaktionen fl Raumtemperatur-Natriumionenspeicherung. <i>Angewandte Chemie</i> , 2019 , 131, 18490-18504	3.6	8
124	Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. <i>ACS Energy Letters</i> , 2019 , 4, 1717-1724	20.1	78
123	Sulfur-Based Electrodes that Function via Multielectron Reactions for Room-Temperature Sodium-Ion Storage. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18324-18337	16.4	46
122	In Situ Formation of CoS Nanoclusters in Sulfur-Doped Carbon Foam as a Sustainable and High-Rate Sodium-Ion Anode. <i>ACS Applied Materials & District Research</i> , 11, 19218-19226	9.5	33
121	Electrolytes for Dual-Carbon Batteries. <i>ChemElectroChem</i> , 2019 , 6, 2615-2629	4.3	36
120	Surface-Bound Silicon Nanoparticles with a Planar-Oriented N-Type Polymer for Cycle-Stable Li-Ion Battery Anode. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 13251-13256	9.5	18
119	High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. <i>Science China Chemistry</i> , 2019 , 62, 118-125	7.9	8
118	Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. <i>Energy Storage Materials</i> , 2019 , 22, 330-336	19.4	56
117	Recent Progress in Rechargeable Sodium-Ion Batteries: toward High-Power Applications. <i>Small</i> , 2019 , 15, e1805427	11	149
116	A temperature-sensitive poly(3-octylpyrrole)/carbon composite as a conductive matrix of cathodes for building safer Li-ion batteries. <i>Energy Storage Materials</i> , 2019 , 17, 275-283	19.4	23
115	An Al-doped high voltage cathode of Na4Co3(PO4)2P2O7 enabling highly stable 4 V full sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18940-18949	13	21
114	A High-Voltage and Cycle Stable Aqueous Rechargeable Na-Ion Battery Based on Na2Zn3[Fe(CN)6]2NaTi2(PO4)3 Intercalation Chemistry. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5809-58	15.1	12
113	Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. <i>Nano Energy</i> , 2019 , 64, 103903	17.1	58
112	High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double NaV(PO) Electrodes. <i>ACS Applied Materials & Double Navier State State</i>	9.5	21
111	Highly Electrochemically-Reversible Mesoporous Na FePO F/C as Cathode Material for High-Performance Sodium-Ion Batteries. <i>Small</i> , 2019 , 15, e1903723	11	16
110	A Membrane-Free and Energy-Efficient Three-Step Chlor-Alkali Electrolysis with Higher-Purity NaOH Production. <i>ACS Applied Materials & Machine States</i> , 2019 , 11, 45126-45132	9.5	8
109	Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. Nanoscale, 2019 , 11, 21999-22005	7.7	20

(2018-2019)

108	3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. <i>Nano Energy</i> , 2019 , 56, 160-168	17.1	75
107	Stable Li Metal Anode with IbnBolvent-CoordinatedINonflammable Electrolyte for Safe Li Metal Batteries. <i>ACS Energy Letters</i> , 2019 , 4, 483-488	20.1	95
106	High-Capacity Hard Carbon Pyrolyzed from Subbituminous Coal as Anode for Sodium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 729-735	6.1	15
105	Well-defined Na2Zn3[Fe(CN)6]2 nanocrystals as a low-cost and cycle-stable cathode material for Na-ion batteries. <i>Electrochemistry Communications</i> , 2019 , 98, 78-81	5.1	14
104	An all-vanadium aqueous lithium ion battery with high energy density and long lifespan. <i>Energy Storage Materials</i> , 2019 , 18, 92-99	19.4	28
103	A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-Ion Batteries. <i>CheM</i> , 2018 , 4, 1167-1180	16.2	92
102	Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702619	21.8	299
101	A high voltage cathode of Na2+2xFe2\(\text{N}(SO4)\)3 intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4354-4364	13	30
100	Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries. <i>Small</i> , 2018 , 14, 1703116	11	118
99	Low-Defect and Low-Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. <i>Advanced Energy Materials</i> , 2018 , 8, 1703238	21.8	262
98	Symmetric Sodium-Ion Capacitor Based on NaMnO Nanorods for Low-Cost and High-Performance Energy Storage. <i>ACS Applied Materials & District Science</i> , 2018 , 10, 11689-11698	9.5	49
97	Recent Advances in Sodium-Ion Battery Materials. <i>Electrochemical Energy Reviews</i> , 2018 , 1, 294-323	29.3	154
96	Sodium-Ion Batteries: Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries (Adv. Energy Mater. 17/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870079	21.8	21
95	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. <i>ACS Applied Materials & Description of Americal Science</i> , 2018, 10, 593-	-60∮	78
94	Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23396-23407	13	28
93	A Bifunctional Fluorophosphate Electrolyte for Safer Sodium-Ion Batteries. <i>IScience</i> , 2018 , 10, 114-122	6.1	30
92	Aligning academia and industry for unified battery performance metrics. <i>Nature Communications</i> , 2018 , 9, 5262	17.4	156
91	Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 39651-39660	9.5	22

90	A Nonflammable Na+-Based Dual-Carbon Battery with Low-Cost, High Voltage, and Long Cycle Life. <i>Advanced Energy Materials</i> , 2018 , 8, 1802176	21.8	72
89	High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries. <i>ACS Applied Materials & District Materials & D</i>	9.5	35
88	Novel Alkaline Zn/NaMnO Dual-Ion Battery with a High Capacity and Long Cycle Lifespan. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 34108-34115	9.5	36
87	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. <i>Nature Energy</i> , 2018 , 3, 674-681	62.3	357
86	Phosphate Framework Electrode Materials for Sodium Ion Batteries. <i>Advanced Science</i> , 2017 , 4, 160039	92 13.6	200
85	High Rate, Long Lifespan LiV O Nanorods as a Cathode Material for Lithium-Ion Batteries. <i>Small</i> , 2017 , 13, 1603148	11	42
84	Graphene-Scaffolded NaV(PO) Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 7177-7184	9.5	123
83	Manipulating AdsorptionInsertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage. <i>Advanced Energy Materials</i> , 2017 , 7, 1700403	21.8	486
82	Coaxial Three-Layered Carbon/Sulfur/Polymer Nanofibers with High Sulfur Content and High Utilization for Lithium-Sulfur Batteries. <i>ACS Applied Materials & District Science</i> , 2017, 9, 11626-11633	9.5	22
81	Yolk-Shell TiO@C Nanocomposite as High-Performance Anode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 345-353	9.5	52
80	A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core\hat{\mathbb{B}}hell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23238-23242	13	48
79	Novel Ceramic-Grafted Separator with Highly Thermal Stability for Safe Lithium-Ion Batteries. <i>ACS Applied Materials & District Materia</i>	9.5	72
78	An All-Phosphate and Zero-Strain Sodium-Ion Battery Based on NaV(PO) Cathode, NaTi(PO) Anode, and Trimethyl Phosphate Electrolyte with Intrinsic Safety and Long Lifespan. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 43733-43738	9.5	31
77	Surface-engineering enhanced sodium storage performance of Na3V2(PO4)3 cathode via in-situ self-decorated conducting polymer route. <i>Science China Chemistry</i> , 2017 , 60, 1546-1553	7.9	18
76	SnO2-Reduced Graphene Oxide Nanocomposites via Microwave Route as Anode for Sodium-Ion Battery. <i>Jom</i> , 2016 , 68, 2607-2612	2.1	8
75	Low Defect FeFe(CN)6 Framework as Stable Host Material for High Performance Li-Ion Batteries. <i>ACS Applied Materials & Description of Materials & Description (Materials & Description of Materials & Description </i>	9.5	82
74	Hard Carbon Fibers Pyrolyzed from Wool as High-Performance Anode for Sodium-Ion Batteries. <i>Jom</i> , 2016 , 68, 2579-2584	2.1	19
73	Dual Core-Shell Structured Si@SiO@C Nanocomposite Synthesized via a One-Step Pyrolysis Method as a Highly Stable Anode Material for Lithium-Ion Batteries. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	72

(2015-2016)

72	Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 16684-9	9.5	107
71	Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11351-11356	13	58
70	Building thermally stable Li-ion batteries using a temperature-responsive cathode. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11239-11246	13	44
69	Graphene-Modified TiO2 Microspheres Synthesized by a Facile Spray-Drying Route for Enhanced Sodium-Ion Storage. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 545-552	3.1	36
68	Graphene-Wrapped Na2C12H6O4 Nanoflowers as High Performance Anodes for Sodium-Ion Batteries. <i>Small</i> , 2016 , 12, 583-7	11	71
67	Coral-Inspired Nanoengineering Design for Long-Cycle and Flexible Lithium-Ion Battery Anode. <i>ACS Applied Materials & Design Faces</i> , 2016 , 8, 9185-93	9.5	18
66	Highly Crystallized NattoFe(CN) with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 5393-9	9.5	220
65	TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. <i>Journal of Membrane Science</i> , 2016 , 504, 97-103	9.6	113
64	Nanospherical-Like Manganese Monoxide/Reduced Graphene Oxide Composite Synthesized by Electron Beam Radiation as Anode Material for High-Performance Lithium-Ion Batteries. <i>Electrochimica Acta</i> , 2016 , 196, 431-439	6.7	29
63	Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. <i>ACS Applied Materials & Discourse Applied & Discourse & Discour</i>	9.5	59
62	Poly(3-butylthiophene)-based positive-temperature-coefficient electrodes for safer lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 187, 173-178	6.7	20
61	3D Graphene Decorated NaTi2(PO4)3 Microspheres as a Superior High-Rate and Ultracycle-Stable Anode Material for Sodium Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502197	21.8	177
60	Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage. <i>ACS Applied Materials & Empty Interfaces</i> , 2016 , 8, 18867-77	9.5	35
59	A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7416-7421	13	205
58	A Safer Sodium-Ion Battery Based on Nonflammable Organic Phosphate Electrolyte. <i>Advanced Science</i> , 2016 , 3, 1600066	13.6	84
57	Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7406-7412	13	115
56	High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries. <i>ACS Applied Materials & Displacement Method For Sodium Ion Batteries</i> . <i>ACS Applied Materials & Displacement Method For Sodium Ion Batteries.</i>	 84 ⁵	108
55	Improved rate capability of the conducting functionalized FTO-coated Li-[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. <i>Journal of Materials</i> Chemistry A. 2015 , 3, 17113-17119	13	32

54	Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries. <i>RSC Advances</i> , 2015 , 5, 172-176	3.7	42
53	A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 24119-26	9.5	91
52	A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode. <i>RSC Advances</i> , 2015 , 5, 106519-106522	3.7	61
51	Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. <i>Advanced Materials</i> , 2015 , 27, 5895-900	24	372
50	Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5708-5713	13	92
49	Enabling a high capacity and long cycle life for nano-Si anodes by building a stable solid interface with a Li+-conducting polymer. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9938-9944	13	18
48	Photoregenerative I?/I🛚 couple as a liquid cathode for proton exchange membrane fuel cell. <i>Scientific Reports</i> , 2014 , 4, 6795	4.9	3
47	Bis(2,2,2-trifluoroethyl) methylphosphonate: An Novel Flame-retardant Additive for Safe Lithium-ion Battery. <i>Electrochimica Acta</i> , 2014 , 129, 300-304	6.7	38
46	SbII nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 323-328	35.4	536
45	A tin(II) sulfidelarbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16424-16428	13	118
44	Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. <i>Nano Letters</i> , 2014 , 14, 3539-43	11.5	210
43	Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 3508-12	9.5	72
42	A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries. <i>Advanced Materials</i> , 2014 , 26, 6301-6	24	217
41	Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. <i>Nano Letters</i> , 2014 , 14, 1865-9	11.5	353
40	Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium ulfur batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8854-8858	13	177
39	Enhanced Cycling Stability of Sulfur Cathode Surface-Modified by Poly(N-methylpyrrole). <i>Electrochimica Acta</i> , 2014 , 135, 108-113	6.7	13
38	Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11397	13	194
37	A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3Na2NiFe(CN)6 intercalation chemistry. <i>Electrochemistry Communications</i> , 2013 , 31, 145-148	8 ^{5.1}	238

(2012-2013)

36	Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. Journal of Materials Chemistry A, 2013 , 1, 10130	13	236
35	A redox-active polythiophene-modified separator for safety control of lithium-ion batteries. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1487-1493	2.6	10
34	Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. <i>Chemical Communications</i> , 2013 , 49, 11370-2	5.8	76
33	Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2013 , 51, 114-118	2.6	62
32	Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4988	13	98
31	High capacity and rate capability of amorphous phosphorus for sodium ion batteries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 4633-6	16.4	535
30	Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3895	13	215
29	SiCBbII nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. <i>Electrochimica Acta</i> , 2013 , 87, 41-45	6.7	84
28	Synthesis of Monoclinic Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Nanoparticles by a Layered-Template Route for High-Performance Li-Ion Batteries. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 2887	-2892	18
27	An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 227, 106-110	8.9	59
26	A SnBnSII nanocomposite as anode host materials for Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7181	13	126
25	High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. <i>Angewandte Chemie</i> , 2013 , 125, 4731-4734	3.6	245
24	A Li+-conductive microporous carbonBulfur composite for Li-S batteries. <i>Electrochimica Acta</i> , 2013 , 87, 497-502	6.7	84
23	In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage. <i>Advanced Energy Materials</i> , 2012 , 2, 95-102	21.8	216
22	In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage (Adv. Energy Mater. 1/2012). <i>Advanced Energy Materials</i> , 2012 , 2, 94-94	21.8	5
21	Pb-sandwiched nanoparticles as anode material for lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 291-295	2.6	18
20	Fe(CN)6 ^{II} -doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries. <i>RSC Advances</i> , 2012 , 2, 5495	3.7	56
19	Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17768		77

18	High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. <i>Chemical Communications</i> , 2012 , 48, 7070-2	5.8	560
17	A positive-temperature-coefficient electrode with thermal protection mechanism for rechargeable lithium batteries. <i>Science Bulletin</i> , 2012 , 57, 4205-4209		22
16	An electrolyte additive for thermal shutdown protection of Li-ion batteries. <i>Electrochemistry Communications</i> , 2012 , 25, 98-100	5.1	27
15	Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	87
14	Nanosized Na4Fe(CN)6/C Composite as a Low-Cost and High-Rate Cathode Material for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2012 , 2, 410-414	21.8	228
13	Redox-active Fe(CN)(6)(4-)-doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries. <i>Advanced Materials</i> , 2011 , 23, 4913-7	24	108
12	Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7266		55
11	Electrochemical properties of nano-crystalline LiNi0.5Mn1.5O4 synthesized by polymer-pyrolysis method. <i>Journal of Solid State Electrochemistry</i> , 2008 , 12, 687-691	2.6	25
10	Enhanced electrochemical performance of submicron LiCoO2 synthesized by polymer pyrolysis method. <i>Journal of Solid State Electrochemistry</i> , 2007 , 12, 149-153	2.6	14
9	Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. <i>Journal of Solid State Electrochemistry</i> , 2006 , 10, 283-2	287	25
8	Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. <i>Electrochimica Acta</i> , 2004 , 49, 4189-4196	6.7	108
7	Surface-Modified Graphite as an Improved Intercalating Anode for Lithium-Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, A30		77
6	Effects of Anions on the Zinc Electrodeposition onto Glassy-Carbon Electrode. <i>Russian Journal of Electrochemistry</i> , 2002 , 38, 321-325	1.2	26
5	Designing Advanced Electrolytes for Lithium Secondary Batteries Based on the Coordination Number Rule. <i>ACS Energy Letters</i> ,4282-4290	20.1	16
4	Amorphous NaVOPO 4 as a High-Rate and Ultrastable Cathode Material for Sodium-Ion Batteries. <i>CCS Chemistry</i> ,2428-2436	7.2	16
3	An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an Adsorption-Intercalation/FillingIHybrid Mechanism. <i>Advanced Energy Materials</i> ,2200886	21.8	15
2	A Facile and Efficient Chemical Prelithiation of Graphite for Full Capacity Utilization of Li-Ion Batteries. <i>Energy Technology</i> ,2200269	3.5	
1	Understanding of the sodium storage mechanism in hard carbon anodes		12