Lars Vogt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6357735/publications.pdf

Version: 2024-02-01

566801 377514 1,358 49 15 34 h-index citations g-index papers 52 52 52 1486 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Frontiers in Zoology, 2010, 7, 29.	0.9	281
2	Finding Our Way through Phenotypes. PLoS Biology, 2015, 13, e1002033.	2.6	178
3	New insights into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Molecular Phylogenetics and Evolution, 2003, 29, 279-288.	1.2	174
4	A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics, 2010, 26, 408-437.	1.5	121
5	The linguistic problem of morphology: structure versus homology and the standardization of morphological data. Cladistics, 2010, 26, 301-325.	1.5	81
6	A contribution to sedentary polychaete phylogeny using 18S rRNA sequence data. Journal of Zoological Systematics and Evolutionary Research, 2003, 41, 186-195.	0.6	62
7	The future role of bio-ontologies for developing a general data standard in biology: chance and challenge for zoo-morphology. Zoomorphology, 2009, 128, 201-217.	0.4	39
8	Improving Access to Scientific Literature with Knowledge Graphs. Bibliothek: Forschung Und Praxis, 2020, 44, 516-529.	0.0	31
9	Learning from Linnaeus: towards developing the foundation for a general structure concept for morphology. Zootaxa, 2008, 1950, 123-152.	0.2	29
10	The unfalsifiability of cladograms and its consequences. Cladistics, 2008, 24, 62-73.	1.5	27
11	Assessing similarity: on homology, characters and the need for a semantic approach to nonâ€evolutionary comparative homology. Cladistics, 2017, 33, 513-539.	1.5	26
12	The need for data standards in zoomorphology. Journal of Morphology, 2013, 274, 793-808.	0.6	23
13	Molecular phylogeny of lugworms (Annelida, Arenicolidae) inferred from three genes. Molecular Phylogenetics and Evolution, 2005, 34, 673-679.	1.2	22
14	Fiat or Bona Fide Boundary—A Matter of Granular Perspective. PLoS ONE, 2012, 7, e48603.	1.1	20
15	Towards a semantic approach to numerical tree inference in phylogenetics. Cladistics, 2018, 34, 200-224.	1.5	20
16	Testing and weighting characters. Organisms Diversity and Evolution, 2002, 2, 319-333.	0.7	18
17	The logical basis for coding ontologically dependent characters. Cladistics, 2018, 34, 438-458.	1.5	18
18	Accommodating Ontologies to Biological Realityâ€"Top-Level Categories of Cumulative-Constitutively Organized Material Entities. PLoS ONE, 2012, 7, e30004.	1.1	17

#	Article	IF	Citations
19	Spatio-structural granularity of biological material entities. BMC Bioinformatics, 2010, 11, 289.	1.2	16
20	eScience and the need for data standards in the life sciences: in pursuit of objectivity rather than truth. Systematics and Biodiversity, 2013, 11, 257-270.	0.5	15
21	Emerging semantics to link phenotype and environment. PeerJ, 2015, 3, e1470.	0.9	15
22	Top-Level Categories of Constitutively Organized Material Entities - Suggestions for a Formal Top-Level Ontology. PLoS ONE, 2011, 6, e18794.	1.1	12
23	Transforming the study of organisms: Phenomic data models and knowledge bases. PLoS Computational Biology, 2020, 16, e1008376.	1.5	12
24	20 Documenting Morphology: Morph·D·Base. , 2014, , 475-504.		10
25	Levels and building blocks—toward a domain granularity framework for the life sciences. Journal of Biomedical Semantics, 2019, 10, 4.	0.9	10
26	Toward Representing Research Contributions in Scholarly Knowledge Graphs Using Knowledge Graph Cells. , 2020, , .		10
27	Weighting indels as phylogenetic markers of 18S rDNA sequences in Diptera and Strepsiptera. Organisms Diversity and Evolution, 2002, 2, 335-349.	0.7	9
28	Why phylogeneticists should care less about <scp>P</scp> opper's falsificationism. Cladistics, 2014, 30, 1-4.	1.5	9
29	SOCCOMAS: a FAIR web content management system that uses knowledge graphs and that is based on semantic programming. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	7
30	Organizing phenotypic dataâ€"a semantic data model for anatomy. Journal of Biomedical Semantics, 2019, 10, 12.	0.9	7
31	Signs and phylogeny: A semiotic approach to systematics. Semiotica, 2004, 2004, .	0.2	6
32	A falsificationist perspective on the usage of process frequencies in phylogenetics. Zoologica Scripta, 2007, 36, 395-407.	0.7	6
33	SKG4EOSC - Scholarly Knowledge Graphs for EOSC: Establishing a backbone of knowledge graphs for FAIR Scholarly Information in EOSC. Research Ideas and Outcomes, 0, 8, .	1.0	5
34	Popper and phylogenetics, a misguided rendezvous. Australian Systematic Botany, 2014, 27, 85.	0.3	3
35	ORKG: Facilitating the Transfer of Research Results with the Open Research Knowledge Graph. Research Ideas and Outcomes, 0, 7, .	1.0	3
36	FAIR data representation in times of eScience: a comparison of instance-based and class-based semantic representations of empirical data using phenotype descriptions as example. Journal of Biomedical Semantics, 2021, 12, 20.	0.9	3

#	Article	IF	CITATIONS
37	Using Semantic Programming for Developing a Web Content Management System for Semantic Phenotype Data. Lecture Notes in Computer Science, 2019, , 200-206.	1.0	2
38	Using Named Graphs and Knowledge Graph Template Patterns for Efficiently Organizing FAIR Anatomy Data and Metadata. Biodiversity Information Science and Standards, 0, 3, .	0.0	2
39	Bona Fideness of Material Entities and Their Boundaries. , 2019, , .		2
40	Phenotyping in the era of genomics: MaTrics—a digital character matrix to document mammalian phenotypic traits. Mammalian Biology, 2022, 102, 235-249.	0.8	2
41	Developing a Module for Generating Formalized Semantic Morphological Descriptions for Morphâ [™] Dâ [™] Base. Biodiversity Information Science and Standards, 0, 1, e15141.	0.0	1
42	Anatomy and the type concept in biology show that ontologies must be adapted to the diagnostic needs of research. Journal of Biomedical Semantics, 2022, 13, .	0.9	1
43	Semantic Annotations of Text and Images in Morphâ^™Dâ^™Base. Biodiversity Information Science and Standards, 0, 1, e14778.	0.0	0
44	SOCCOMAS: A Self-Describing and Content-Independent Application for Semantic Ontology-Controlled Web-Content-Management-Systems. Biodiversity Information Science and Standards, $0, 1, e20033$.	0.0	0
45	Using Semantics for morphological Descriptions in Morph•D•Base. Biodiversity Information Science and Standards, 0, 2, e25535.	0.0	0
46	Entry Life-Cycle with automatic Change-History & Department of the Content Management Systems as implemented in SOCCOMAS. Biodiversity Information Science and Standards, 0, 2, e26177.	0.0	0
47	FAIR.ReD: Semantic knowledge graph infrastructure for the life sciences. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
48	Anatomy Knowledge Graphs: Toward FAIR morphological data. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
49	From Data to Knowledge: AÂsemantic knowledge graph application for curating specimen data. Biodiversity Information Science and Standards, 0, 3, .	0.0	O