Isabel PÃ'Ã\sas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6357717/publications.pdf

Version: 2024-02-01

471061 552369 27 912 17 26 citations h-index g-index papers 27 27 27 1188 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. Journal of Hydrology, 2014, 519, 2067-2080.	2.3	98
2	Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches. Agricultural Water Management, 2020, 233, 106081.	2.4	85
3	Remote sensing based indicators of changes in a mountain rural landscape of Northeast Portugal. Applied Geography, 2011, 31, 871-880.	1.7	73
4	Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. Journal of Environmental Management, 2013, 131, 185-195.	3.8	68
5	Estimation of Actual Crop Coefficients Using Remotely Sensed Vegetation Indices and Soil Water Balance Modelled Data. Remote Sensing, 2015, 7, 2373-2400.	1.8	61
6	Predicting Grapevine Water Status Based on Hyperspectral Reflectance Vegetation Indices. Remote Sensing, 2015, 7, 16460-16479.	1.8	51
7	Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms. Biosystems Engineering, 2014, 128, 69-81.	1.9	48
8	A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods. Agricultural Water Management, 2020, 239, 106267.	2.4	46
9	Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands. International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 159-172.	1.4	41
10	SegOptimâ€"A new R package for optimizing object-based image analyses of high-spatial resolution remotely-sensed data. International Journal of Applied Earth Observation and Geoinformation, 2019, 76, 218-230.	1.4	37
11	Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. International Journal of Applied Earth Observation and Geoinformation, 2017, 58, 177-190.	1.4	33
12	An evaluation of changes in a mountainous rural landscape of Northeast Portugal using remotely sensed data. Landscape and Urban Planning, 2011, 101, 253-261.	3.4	31
13	Retrieval of Maize Leaf Area Index Using Hyperspectral and Multispectral Data. Remote Sensing, 2018, 10, 1942.	1.8	31
14	Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique. Journal of Applied Remote Sensing, 2019, 13, 1.	0.6	30
15	Exploring the spatiotemporal dynamics of habitat suitability to improve conservation management of a vulnerable plant species. Biodiversity and Conservation, 2016, 25, 2867-2888.	1.2	25
16	Evaluating the fitness for use of spatial data sets to promote quality in ecological assessment and monitoring. International Journal of Geographical Information Science, 2014, 28, 2356-2371.	2.2	23
17	Mapping and Assessing the Dynamics of Shifting Agricultural Landscapes Using Google Earth Engine Cloud Computing, a Case Study in Mozambique. Remote Sensing, 2020, 12, 1279.	1.8	23
18	Toward a generalized predictive model of grapevine water status in Douro region from hyperspectral data. Agricultural and Forest Meteorology, 2020, 280, 107793.	1.9	19

#	Article	IF	CITATION
19	Dynamics of mountain semi-natural grassland meadows inferred from SPOT-VEGETATION and field spectroradiometer data. International Journal of Remote Sensing, 2012, 33, 4334-4355.	1.3	17
20	Canopy VIS-NIR spectroscopy and self-learning artificial intelligence for a generalised model of predawn leaf water potential in Vitis vinifera. Biosystems Engineering, 2022, 219, 235-258.	1.9	16
21	Assessing predawn leaf water potential based on hyperspectral data and pigment's concentration of Vitis vinifera L. in the Douro Wine Region. Scientia Horticulturae, 2021, 278, 109860.	1.7	14
22	Estimating the Leaf Area of Cut Roses in Different Growth Stages Using Image Processing and Allometrics. Horticulturae, 2016, 2, 6.	1.2	11
23	Evaluation of crop coefficient and evapotranspiration data for sugar beets from landsat surface reflectances using micrometeorological measurements and weighing lysimetry. Agricultural Water Management, 2021, 244, 106533.	2.4	10
24	Maize leaf area estimation in different growth stages based on allometric descriptors. African Journal of Agricultural Research Vol Pp, 2018, 13, 202-209.	0.2	7
25	Spectral and thermal data as a proxy for leaf protective energy dissipation under kaolin application in grapevine cultivars. Open Agriculture, 2019, 4, 294-304.	0.7	7
26	Evaluating MODIS vegetation indices using ground based measurements in mountain semi-natural meadows of Northeast Portugal. , 2010 , , .		5
27	Modelling evapotranspiration of soilless cut roses 'Red Naomi' based on climatic and crop predictors. Zahradnictvi (Prague, Czech Republic: 1992), 2019, 46, 107-114.	0.3	2