
Douglas F Call

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6357685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving Long-Term Anode Stability in Capacitive Deionization Using Asymmetric Electrode Mass Ratios. ACS ES&T Engineering, 2022, 2, 129-139.	3.7	9
2	Mechanisms of orthophosphate removal from water by lanthanum carbonate and other lanthanum-containing materials. Science of the Total Environment, 2022, 820, 153153.	3.9	7
3	Life cycle assessment of salinity gradient energy recovery using reverse electrodialysis. Journal of Industrial Ecology, 2021, 25, 1194-1206.	2.8	10
4	Evaluation of the Temperature Range for Biological Activity in Landfills Experiencing Elevated Temperatures. ACS ES&T Engineering, 2021, 1, 216-227.	3.7	19
5	Evidence of thermophilic waste decomposition at a landfill exhibiting elevated temperature regions. Waste Management, 2021, 124, 26-35.	3.7	14
6	Developing microbial communities containing a high abundance of exoelectrogenic microorganisms using activated carbon granules. Science of the Total Environment, 2021, 768, 144361.	3.9	10
7	Influence of natural organic matter and pH on phosphate removal by and filterable lanthanum release from lanthanum-modified bentonite. Water Research, 2021, 202, 117399.	5.3	32
8	Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments. Environment International, 2020, 145, 106115.	4.8	62
9	Effect of cross-chamber flow electrode recirculation on pH and faradaic reactions in capacitive deionization. Desalination, 2020, 492, 114600.	4.0	8
10	Asymmetrical removal of sodium and chloride in flow-through capacitive deionization. Water Research, 2020, 183, 116044.	5.3	25
11	Electrochemical and Microbiological Characterization of Bioanode Communities Exhibiting Variable Levels of Startup Activity. Frontiers in Energy Research, 2019, 7, .	1.2	5
12	Nitrogen Gas Fixation and Conversion to Ammonium Using Microbial Electrolysis Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 3511-3519.	3.2	20
13	Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity. Environmental Science & Technology, 2018, 52, 4929-4936.	4.6	33
14	Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation. Environmental Science: Water Research and Technology, 2018, 4, 1794-1806.	1.2	20
15	Impact of Solution Composition on the Resistance of Ion Exchange Membranes. ECS Meeting Abstracts, 2018, , .	0.0	0
16	Electricity generation using continuously recirculated flow electrodes in reverse electrodialysis. Journal of Power Sources, 2017, 355, 206-210.	4.0	32
17	Impact of natural organic matter and inorganic solutes on energy recovery from five real salinity gradients using reverse electrodialysis. Journal of Membrane Science, 2017, 541, 621-632.	4.1	87
18	Substrate and electrode potential affect electrotrophic activity of inverted bioanodes. Bioelectrochemistry, 2016, 110, 13-18.	2.4	16

DOUGLAS F CALL

#	Article	IF	CITATIONS
19	Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications. Environmental Sciences: Processes and Impacts, 2016, 18, 968-980.	1.7	143
20	Bacterial growth and respiration in laminar flow microbial fuel cells. Journal of Renewable and Sustainable Energy, 2014, 6, .	0.8	26
21	<scp><i>G</i></scp> <i>eobacter</i> sp. <scp>SD</scp> â€1 with enhanced electrochemical activity in highâ€salt concentration solutions. Environmental Microbiology Reports, 2014, 6, 723-729.	1.0	49
22	Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. ACS Sustainable Chemistry and Engineering, 2014, 2, 910-917.	3.2	127
23	Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells. Bioresource Technology, 2013, 133, 74-81.	4.8	58
24	Convergent development of anodic bacterial communities in microbial fuel cells. ISME Journal, 2012, 6, 2002-2013.	4.4	190
25	Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes. Applied and Environmental Microbiology, 2012, 78, 5212-5219.	1.4	165
26	Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances. Biotechnology and Bioengineering, 2012, 109, 405-414.	1.7	58
27	Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosensors and Bioelectronics, 2011, 28, 71-76.	5.3	166
28	Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. Bioresource Technology, 2011, 102, 7301-7306.	4.8	117
29	A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosensors and Bioelectronics, 2011, 26, 4526-4531.	5.3	120
30	Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource Technology, 2011, 102, 388-394.	4.8	249
31	Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA. Applied and Environmental Microbiology, 2011, 77, 8791-8794.	1.4	67
32	Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Applied Microbiology and Biotechnology, 2010, 88, 371-380.	1.7	104
33	Optimal Set Anode Potentials Vary in Bioelectrochemical Systems. Environmental Science & Technology, 2010, 44, 6036-6041.	4.6	177
34	Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production. Environmental Science & Technology, 2010, 44, 9578-9583.	4.6	185
35	Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environmental Science & Technology, 2009, 43, 3953-3958.	4.6	1,033
36	High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells. Environmental Science & Technology, 2009, 43, 2179-2183.	4.6	230

DOUGLAS F CALL

#	Article	IF	CITATIONS
37	Hydrogen Production by <i>Geobacter</i> Species and a Mixed Consortium in a Microbial Electrolysis Cell. Applied and Environmental Microbiology, 2009, 75, 7579-7587.	1.4	181
38	Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane. Environmental Science & Technology, 2008, 42, 3401-3406.	4.6	768
39	Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environmental Science & Technology, 2008, 42, 8630-8640.	4.6	1,091