Rolf Dollevoet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6357624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automatic Detection of Squats in Railway Infrastructure. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 1980-1990.	8.0	157
2	A Big Data Analysis Approach for Rail Failure Risk Assessment. Risk Analysis, 2017, 37, 1495-1507.	2.7	86
3	Improvements in Axle Box Acceleration Measurements for the Detection of Light Squats in Railway Infrastructure. IEEE Transactions on Industrial Electronics, 2015, 62, 4385-4397.	7.9	74
4	Health condition monitoring of insulated joints based on axle box acceleration measurements. Engineering Structures, 2016, 123, 225-235.	5.3	56
5	A decision support approach for condition-based maintenance of rails based on big data analysis. Transportation Research Part C: Emerging Technologies, 2018, 95, 185-206.	7.6	52
6	Evaluating Degradation at Railway Crossings Using Axle Box Acceleration Measurements. Sensors, 2017, 17, 2236.	3.8	46
7	An approach to determine a critical size for rolling contact fatigue initiating from rail surface defects. International Journal of Rail Transportation, 2017, 5, 16-37.	2.7	43
8	New Insights into the Short Pitch Corrugation Enigma Based on 3D-FE Coupled Dynamic Vehicle-Track Modeling of Frictional Rolling Contact. Applied Sciences (Switzerland), 2017, 7, 807.	2.5	40
9	The vertical and the longitudinal dynamic responses of the vehicle–track system to squat-type short wavelength irregularity. Vehicle System Dynamics, 2013, 51, 1918-1937.	3.7	38
10	Entropy-Based Local Irregularity Detection for High-Speed Railway Catenaries With Frequent Inspections. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 3536-3547.	4.7	31
11	Influence of Microstructure on Mechanical Properties of Bainitic Steels in Railway Applications. Metals, 2019, 9, 778.	2.3	29
12	Parametric study of axle box acceleration at squats. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 229, 841-851.	2.0	28
13	3D FE modelling and validation of frictional contact with partial slip in compression–shift–rolling evolution. International Journal of Rail Transportation, 2016, 4, 20-36.	2.7	28
14	Analysis of the evolvement of contact wire wear irregularity in railway catenary based on historical data. Vehicle System Dynamics, 2018, 56, 1207-1232.	3.7	27
15	Influence of wheel–rail contact modelling on vehicle dynamic simulation. Vehicle System Dynamics, 2015, 53, 1190-1203.	3.7	26
16	Ensemble EMD-Based Automatic Extraction of the Catenary Structure Wavelength From the Pantograph–Catenary Contact Force. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 2272-2283.	4.7	24
17	Development of a New Downscale Setup for Wheel-Rail Contact Experiments under Impact Loading Conditions. Experimental Techniques, 2018, 42, 1-17.	1.5	24
18	Modelling of non-steady-state transition from single-point to two-point rolling contact. Tribology International, 2016, 101, 152-163.	5.9	22

ROLF DOLLEVOET

#	Article	IF	CITATIONS
19	A Bayesian Network Approach for Condition Monitoring of High-Speed Railway Catenaries. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 4037-4051.	8.0	22
20	Wheel–Rail Impact at Crossings: Relating Dynamic Frictional Contact to Degradation. Journal of Computational and Nonlinear Dynamics, 2017, 12, .	1.2	21
21	Dutch research results on wheel/rail interface management: 2001–2013 and beyond. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228, 642-651.	2.0	20
22	Lagrangian Explicit Finite Element Modeling for Spin-Rolling Contact. Journal of Tribology, 2015, 137, .	1.9	18
23	Robust and Predictive Fuzzy Key Performance Indicators for Condition-Based Treatment of Squats in Railway Infrastructures. Journal of Infrastructure Systems, 2017, 23, .	1.8	18
24	Monitoring the railway infrastructure: Detection of surface defects using wavelets. , 2013, , .		15
25	Robust optimisation of railway crossing geometry. Vehicle System Dynamics, 2016, 54, 617-637.	3.7	11
26	An Integrated Approach for Characterizing the Dynamic Behavior of the Wheel–Rail Interaction at Crossings. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 2332-2344.	4.7	11
27	Axle box acceleration for health monitoring of insulated joints: A case study in the Netherlands. , 2014, , .		9
28	Identification of the catenary structure wavelength using pantograph head acceleration measurements. , 2017, , .		6
29	A Condition-Based Maintenance Methodology for Rails in Regional Railway Networks Using Evolutionary Multiobjective Optimization. , 2018, , .		2