Esti Yeger-Lotem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6357606/publications.pdf

Version: 2024-02-01

45 papers

9,579 citations

236833 25 h-index 42 g-index

50 all docs 50 docs citations

times ranked

50

19759 citing authors

#	Article	IF	CITATIONS
1	The differential activity of biological processes in tissues and cell subsets can illuminate disease-related processes and cell-type identities. Bioinformatics, 2022, 38, 1584-1592.	1.8	7
2	The TissueNet v.3 Database: Protein-protein Interactions in Adult and Embryonic Human Tissue contexts. Journal of Molecular Biology, 2022, 434, 167532.	2.0	6
3	The Organ-Disease Annotations (ODiseA) Database of Hereditary Diseases and Inflicted Tissues. Journal of Molecular Biology, 2022, 434, 167619.	2.0	6
4	The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones. Nature Communications, 2021, 12, 2180.	5.8	62
5	Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death and Disease, 2021, 12, 452.	2.7	16
6	Unraveling the hidden role of a uORF-encoded peptide as a kinase inhibitor of PKCs. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	32
7	Mechanisms of tissue and cell-type specificity in heritable traits andÂdiseases. Nature Reviews Genetics, 2020, 21, 137-150.	7.7	105
8	A Quantitative Proteome Map of the Human Body. Cell, 2020, 183, 269-283.e19.	13.5	243
9	The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science, 2020, 369, 1318-1330.	6.0	2,385
10	Dosage-sensitive molecular mechanisms are associated with the tissue-specificity of traits and diseases. Computational and Structural Biotechnology Journal, 2020, 18, 4024-4032.	1.9	6
11	Differential network analysis of multiple human tissue interactomes highlights tissue-selective processes and genetic disorder genes. Bioinformatics, 2020, 36, 2821-2828.	1.8	28
12	A reference map of the human binary protein interactome. Nature, 2020, 580, 402-408.	13.7	724
13	Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Science Advances, 2019, 5, eaaw8330.	4.7	182
14	Large-scale analysis of human gene expression variability associates highly variable drug targets with lower drug effectiveness and safety. Bioinformatics, 2019, 35, 3028-3037.	1.8	24
15	ResponseNet v.3: revealing signaling and regulatory pathways connecting your proteins and genes across human tissues. Nucleic Acids Research, 2019, 47, W242-W247.	6.5	11
16	RSRC1 mutation affects intellect and behaviour through aberrant splicing and transcription, downregulating IGFBP3. Brain, 2018, 141, 961-970.	3.7	20
17	The DifferentialNet database of differential protein–protein interactions in human tissues. Nucleic Acids Research, 2018, 46, D522-D526.	6.5	71
18	Role of duplicate genes in determining the tissue-selectivity of hereditary diseases. PLoS Genetics, 2018, 14, e1007327.	1.5	33

#	Article	IF	Citations
19	Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae. Nucleic Acids Research, 2018, 46, 7586-7611.	6.5	19
20	MotifNet: a web-server for network motif analysis. Bioinformatics, 2017, 33, 1907-1909.	1.8	18
21	Genetic effects on gene expression across human tissues. Nature, 2017, 550, 204-213.	13.7	3,500
22	Identifying <i>cis</i> -mediators for <i>trans</i> -eQTLs across many human tissues using genomic mediation analysis. Genome Research, 2017, 27, 1859-1871.	2.4	72
23	Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Research, 2017, 27, 1843-1858.	2.4	139
24	The TissueNet v.2 database: A quantitative view of protein-protein interactions across human tissues. Nucleic Acids Research, 2017, 45, D427-D431.	6.5	55
25	An Asymmetrically Balanced Organization of Kinases versus Phosphatases across Eukaryotes Determines Their Distinct Impacts. PLoS Computational Biology, 2017, 13, e1005221.	1.5	31
26	Algorithms for Regular Tree Grammar Network Search and Their Application to Mining Human–viral Infection Patterns. Journal of Computational Biology, 2016, 23, 165-179.	0.8	2
27	A Differentiation Transcription Factor Establishes Muscle-Specific Proteostasis in Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006531.	1.5	35
28	Human protein interaction networks across tissues and diseases. Frontiers in Genetics, 2015, 6, 257.	1.1	76
29	MyProteinNet: build up-to-date protein interaction networks for organisms, tissues and user-defined contexts. Nucleic Acids Research, 2015, 43, W258-W263.	6.5	49
30	A combination of gene expression ranking and coâ€expression network analysis increases discovery rate in largeâ€scale mutant screens for novel <i>Arabidopsis thaliana</i> abiotic stress genes. Plant Biotechnology Journal, 2015, 13, 501-513.	4.1	33
31	Algorithms for Regular Tree Grammar Network Search and Their Application to Mining Human-Viral Infection Patterns. Lecture Notes in Computer Science, 2015, , 53-65.	1.0	0
32	Comparative Analysis of Human Tissue Interactomes Reveals Factors Leading to Tissue-Specific Manifestation of Hereditary Diseases. PLoS Computational Biology, 2014, 10, e1003632.	1.5	70
33	Cancer Evolution Is Associated with Pervasive Positive Selection on Globally Expressed Genes. PLoS Genetics, 2014, 10, e1004239.	1.5	93
34	The TissueNet database of human tissue protein–protein interactions. Nucleic Acids Research, 2013, 41, D841-D844.	6.5	54
35	ResponseNet2.0: revealing signaling and regulatory pathways connecting your proteins and genesâ€"now with human data. Nucleic Acids Research, 2013, 41, W198-W203.	6.5	25
36	A context-sensitive framework for the analysis of human signalling pathways in molecular interaction networks. Bioinformatics, 2013, 29, i210-i216.	1.8	8

3

#	Article	IF	Citations
37	ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data. Nucleic Acids Research, 2011, 39, W424-W429.	6.5	76
38	Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models. DMM Disease Models and Mechanisms, 2010, 3, 194-208.	1.2	159
39	Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nature Genetics, 2009, 41, 316-323.	9.4	266
40	Chromosomal organization is shaped by the transcription regulatory network. Trends in Genetics, 2005, 21, 138-142.	2.9	69
41	Alignment of metabolic pathways. Bioinformatics, 2005, 21, 3401-3408.	1.8	193
42	Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5934-5939.	3.3	479
43	Detection of regulatory circuits by integrating the cellular networks of protein-protein interactions and transcription regulation. Nucleic Acids Research, 2003, 31, 6053-6061.	6.5	34
44	Dynamic voting for consistent primary components. , 1997, , .		35
45	The AS/400 cluster engine: A case study. , 0, , .		6