Venkat R Bhethanabotla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6357248/publications.pdf

Version: 2024-02-01

163 papers 3,927 citations

34 h-index 54 g-index

165 all docs

165 docs citations

165 times ranked

4325 citing authors

#	Article	IF	CITATIONS
1	Toward a Visible Light-Driven Photocatalyst: The Effect of Midgap-States-Induced Energy Gap of Undoped TiO ₂ Nanoparticles. ACS Catalysis, 2015, 5, 327-335.	11.2	244
2	Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Physical Review B, 2005, 71,	3.2	209
3	Substituted polyaniline/chitosan composites: Synthesis and characterization. Carbohydrate Polymers, 2009, 75, 448-453.	10.2	150
4	Melting of Pd clusters and nanowires: A comparison study using molecular dynamics simulation. Physical Review B, 2005, 72, .	3.2	95
5	Earth abundant perovskite oxides for low temperature CO ₂ conversion. Energy and Environmental Science, 2018, 11, 648-659.	30.8	93
6	Enhanced CO ₂ Conversion to CO by Silica-Supported Perovskite Oxides at Low Temperatures. ACS Catalysis, 2018, 8, 3021-3029.	11.2	87
7	Isothermal reverse water gas shift chemical looping on La0.75Sr0.25Co(1â^')Fe O3 perovskite-type oxides. Catalysis Today, 2015, 258, 691-698.	4.4	72
8	Nano-Ni doped Li–Mn–B–H system as a new hydrogen storage candidate. International Journal of Hydrogen Energy, 2009, 34, 6325-6334.	7.1	70
9	Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: A computational study and comparisons to experiment. Physical Review E, 2008, 77, 066308.	2.1	69
10	Atmospheric concentrations and dry deposition rates of polycyclic aromatic hydrocarbons (PAHs) for Tampa Bay, Florida, USA. Atmospheric Environment, 2004, 38, 6005-6015.	4.1	68
11	Thermodynamics of mixtures containing alkoxyethanols. Part XV. DISQUAC characterization of systems of alkoxyethanols with n-alkanes or cyclohexane. Physical Chemistry Chemical Physics, 2001, 3, 2856-2865.	2.8	67
12	Molecular dynamics simulations of the structural and dynamic properties of graphite-supported bimetallic transition metal clusters. Physical Review B, 2005, 72, .	3.2	66
13	Oxygen vacancy formation characteristics in the bulk and across different surface terminations of La _(1â°'x) Sr _x Fe _(1â°'y) Co _y O _(3â°Î) perovskite oxides for CO ₂ conversion. Journal of Materials Chemistry A, 2016, 4, 5137-5148.	10.3	65
14	Comparisons of Polymer/Gas Partition Coefficients Calculated from Responses of Thickness Shear Mode and Surface Acoustic Wave Vapor Sensors. Analytical Chemistry, 1998, 70, 199-203.	6.5	64
15	Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film. Biosensors and Bioelectronics, 2020, 163, 112164.	10.1	64
16	Molecular dynamics simulation of temperature and strain rate effects on the elastic properties of bimetallic Pd-Pt nanowires. Physical Review B, 2007, 76, .	3.2	63
17	Gold nanoparticle-based low limit of detection Love wave biosensor for carcinoembryonic antigens. Biosensors and Bioelectronics, 2017, 95, 48-54.	10.1	63
18	Preparation of substituted polyaniline/chitosan composites by in situ electropolymerization and their application to glucose sensing. Carbohydrate Polymers, 2010, 81, 712-719.	10.2	57

#	Article	IF	Citations
19	CO ₂ Adsorption on Anatase TiO ₂ (101) Surfaces in the Presence of Subnanometer Ag/Pt Clusters: Implications for CO ₂ Photoreduction. Journal of Physical Chemistry C, 2014, 118, 26236-26248.	3.1	57
20	Removal of Nonspecifically Bound Proteins on Microarrays Using Surface Acoustic Waves. IEEE Sensors Journal, 2008, 8, 314-320.	4.7	54
21	Thermochemical conversion of carbon dioxide by reverse water-gas shift chemical looping using supported perovskite oxides. Catalysis Today, 2019, 323, 225-232.	4.4	51
22	MoS ₂ Nanoflowers as a Gateway for Solar-Driven CO ₂ Photoreduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 265-275.	6.7	50
23	A comparison of hard-body models for axially-symmetric molecules. Molecular Physics, 1987, 60, 249-251.	1.7	49
24	Examination of mass and modulus contributions to thickness shear mode and surface acoustic wave vapour sensor responses using partition coefficients. Faraday Discussions, 1997, 107, 259-283.	3.2	49
25	Molecular dynamics simulations of oxygen monolayers on graphite. Langmuir, 1987, 3, 581-587.	3.5	47
26	Surface acoustic waves in biosensing applications. Sensors and Actuators Reports, 2021, 3, 100041.	4.4	47
27	Effect of sea salt and calcium carbonate interactions with nitric acid on the direct dry deposition of nitrogen to Tampa Bay, Florida. Atmospheric Environment, 2004, 38, 4847-4858.	4.1	44
28	Molecular Dynamics Simulation Study of Phase Transformations in Transition Bimetallic Nanowires. Journal of Physical Chemistry C, 2007, 111, 2430-2439.	3.1	43
29	Molecular dynamics simulation study of the melting and structural evolution of bimetallicPdâ°'Ptnanowires. Physical Review B, 2006, 74, .	3.2	41
30	Co, Fe, and Mn in La-perovskite oxides for low temperature thermochemical CO2 conversion. Catalysis Today, 2019, 338, 52-59.	4.4	40
31	Thermodynamic Properties of n-Alkoxyethanols + Organic Solvent Mixtures. XI. Total Vapor Pressure Measurements for n-Hexane, Cyclohexane or n-Heptane + 2-Ethoxyethanol at 303.15 and 323.15 K. Journal of Chemical & Engineering Data, 2000, 45, 699-703.	1.9	39
32	Thermodynamic properties of (n-alkoxyethanols + organic solvents). XII. Total vapour pressure measurements for (n-hexane,n-heptane or cyclohexane + 2-methoxyethanol) at different temperatures. Journal of Chemical Thermodynamics, 2001, 33, 47-59.	2.0	38
33	Interplay between Subnanometer Ag and Pt Clusters and Anatase TiO2 (101) Surface: Implications for Catalysis and Photocatalysis. Journal of Physical Chemistry C, 2014, 118, 4702-4714.	3.1	38
34	Bisphosphonate-modified gold nanoparticles: a useful vehicle to study the treatment of osteonecrosis of the femoral head. Nanotechnology, 2011, 22, 035102.	2.6	34
35	More Cu, more problems: Decreased CO2 conversion ability by Cu-doped La0.75Sr0.25FeO3 perovskite oxides. Surface Science, 2016, 648, 92-99.	1.9	34
36	Computer-simulation study of melting in dense oxygen layers on graphite. Physical Review B, 1990, 41, 9480-9487.	3.2	33

#	Article	IF	Citations
37	Acoustic streaming induced elimination of nonspecifically bound proteins from a surface acoustic wave biosensor: Mechanism prediction using fluid-structure interaction models. Journal of Applied Physics, 2010, 108, .	2.5	33
38	Cellular and in vitro toxicity of nanodiamond-polyaniline composites in mammalian and bacterial cell. Materials Science and Engineering C, 2012, 32, 594-598.	7.3	33
39	Versatile Fluorescent Carbon Dots from Citric Acid and Cysteine with Antimicrobial, Anti-biofilm, Antioxidant, and AChE Enzyme Inhibition Capabilities. Journal of Fluorescence, 2021, 31, 1705-1717.	2.5	33
40	Vapor-liquid equilibrium data for ethanol-n-heptane-1-propanol and ethanol-n-heptane-2-propanol and their interpretation by a simple association model. Fluid Phase Equilibria, 1993, 84, 183-206.	2.5	32
41	Design of efficient focused surface acoustic wave devices for potential microfluidic applications. Journal of Applied Physics, 2008, 103, .	2.5	32
42	Integrating Metal-Enhanced Fluorescence and Surface Acoustic Waves for Sensitive and Rapid Quantification of Cancer Biomarkers from Real Matrices. ACS Sensors, 2018, 3, 222-229.	7.8	32
43	Acoustothermal heating in surface acoustic wave driven microchannel flow. Physics of Fluids, 2019, 31, .	4.0	32
44	Effect of Agâ^'Cu Alloy Nanoparticle Composition on Luminescence Enhancement/Quenching. Journal of Physical Chemistry C, 2009, 113, 13016-13022.	3.1	31
45	GOX-functionalized nanodiamond films for electrochemical biosensor. Materials Science and Engineering C, 2011, 31, 1115-1120.	7.3	30
46	GHz AlN-based multiple mode SAW temperature sensor fabricated on PEN substrate. Sensors and Actuators A: Physical, 2020, 315, 112268.	4.1	30
47	Silver-copper alloy nanoparticles for metal enhanced luminescence. Applied Physics Letters, 2009, 95, 131115.	3.3	29
48	Effect of platinum promoters on the removal of O from the surface of cobalt catalysts: A DFT study. Surface Science, 2012, 606, 634-643.	1.9	27
49	Nitrogen-Doped Arginine Carbon Dots and Its Metal Nanoparticle Composites as Antibacterial Agent. Journal of Carbon Research, 2020, 6, 58.	2.7	27
50	Patterned Electrodes for Thickness Shear Mode Quartz Resonators to Achieve Uniform Mass Sensitivity Distribution. IEEE Sensors Journal, 2009, 9, 1772-1777.	4.7	26
51	Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 631-643.	3.0	26
52	A Mixedâ€Metal Porphyrinic Framework Promoting Gasâ€Phase CO ₂ Photoreduction without Organic Sacrificial Agents. ChemSusChem, 2020, 13, 6273-6277.	6.8	26
53	The effect of the morphology of supported subnanometer Pt clusters on the first and key step of CO ₂ photoreduction. Physical Chemistry Chemical Physics, 2015, 17, 25379-25392.	2.8	25
54	Nanoparticle-based Plasmonic Transduction for Modulation of Electrically Excitable Cells. Scientific Reports, 2017, 7, 7803.	3.3	25

#	Article	IF	CITATIONS
55	Assessment of mechanisms for enhanced performance of TiO2/YAG:Yb+3,Er+3 composite photocatalysts for organic degradation. Applied Catalysis B: Environmental, 2017, 202, 147-155.	20.2	25
56	Sorption of benzene, toluene and chloroform by poly(styrene) at 298.15 K and 323.15 K using a quartz crystal balance. Fluid Phase Equilibria, 1997, 139, 371-389.	2.5	24
57	Epitaxial nucleation model for chiral-selective growth of single-walled carbon nanotubes on bimetallic catalyst surfaces. Carbon, 2012, 50, 3766-3773.	10.3	24
58	Low Insertion Loss and Highly Sensitive SH-SAW Sensors Based on $36 \hat{A}^{\circ}$ YX LiTaO < sub> $3 < $ sub> Through the Incorporation of Filled Microcavities. IEEE Sensors Journal, 2015, 15, 787-796.	4.7	24
59	Computer simulations of monolayer and bilayer nitrogen films at low temperature. Journal of Chemical Physics, 1989, 91, 4346-4352.	3.0	23
60	Total Vapor Pressure Measurements for Heptane + 1-Pentanol, + 2-Pentanol, + 3-Pentanol, + 2-Methyl-1-butanol, + 2-Methyl-2-butanol, + 3-Methyl-1-butanol, and + 3-Methyl-2-butanol at 313.15 K. Journal of Chemical & Description Data, 1997, 42, 731-734.	1.9	23
61	Interactions of Hydrogen with Pd and Pd/Ni Alloy Chain-Functionalized Single Walled Carbon Nanotubes from Density Functional Theory. Journal of Physical Chemistry B, 2006, 110, 22415-22425.	2.6	23
62	Total pressure measurements for n-pentane-methanol-2-butanol at 303.15 K. Journal of Chemical & Engineering Data, 1991, 36, 374-378.	1.9	22
63	Binary Total Pressure Measurements for Methanol with 1-Pentanol, 2-Pentanol, 3-Pentanol, 2-Methyl-1-butanol, 2-Methyl-2-butanol, 3-Methyl-1-butanol, and 3-Methyl-2-butanol at 313.15 K. Journal of Chemical & Data, 1996, 41, 1138-1140.	1.9	22
64	Total pressure measurements for benzene with 1-propanol, 2-propanol, 1-pentanol, 3-pentanol, and 2-methyl-2-butanol at 313.15 K. Fluid Phase Equilibria, 2001, 179, 217-229.	2.5	22
65	Fluorescence Detection of miRNA-21 Using Au/Pt Bimetallic Tubular Micromotors Driven by Chemical and Surface Acoustic Wave Forces. ACS Applied Bio Materials, 2021, 4, 7932-7941.	4.6	22
66	Total pressure measurements for pentane + methanol + ethanol at 303.15 K. Journal of Chemical & Engineering Data, 1992, 37, 127-130.	1.9	21
67	Enhancing effects of microcavities on shear-horizontal surface acoustic wave sensors: A finite element simulation study. Applied Physics Letters, 2008, 92, 244104.	3.3	20
68	Effect of Pt and Ru promoters on deactivation of Co catalysts by C deposition during Fischer–Tropsch synthesis: A DFT study. Applied Catalysis A: General, 2013, 462-463, 107-115.	4.3	20
69	Hybrid Electro-Plasmonic Neural Stimulation with Visible-Light-Sensitive Gold Nanoparticles. ACS Nano, 2020, 14, 10917-10928.	14.6	20
70	Manganese Borohydride As a Hydrogen-Storage Candidate: First-Principles Crystal Structure and Thermodynamic Properties. Journal of Physical Chemistry C, 2009, 113, 13416-13424.	3.1	19
71	Hybrid Co@Ni12P5/PPy microspheres with dual synergies for high performance oxygen evolution. Journal of Catalysis, 2020, 391, 357-365.	6.2	19
72	Identification of a stable phase for the high-capacity hydrogen-storage material <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>Zn</mml:mtext><mml:msub><mml:mrow><mml:mrow><mml:mo>(density functional theory and lattice dynamics. Physical Review B, 2008, 77, .</mml:mo></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	<td>><¹⁸ml:mrow</td>	>< ¹⁸ ml:mrow

#	Article	IF	Citations
73	Enhanced surface acoustic wave biosensor performance via delay path modifications in mutually interacting multidirectional transducer configuration: A computational study. Applied Physics Letters, 2009, 95, .	3.3	17
74	Scalable and stable silica-coated silver nanoparticles, produced by electron beam evaporation and rapid thermal annealing, for plasmon-enhanced photocatalysis. Catalysis Communications, 2021, 149, 106213.	3.3	17
75	Total pressure measurements for 1-propanol + 1-pentanol, 1-propanol + 2-pentanol, 2-propanol + 1-pentanol, and 2-propanol + 2-pentanol at 313.15 K. Fluid Phase Equilibria, 1997, 127, 147-153.	2.5	16
76	Achieving Lower Insertion Loss and Higher Sensitivity in a SAW Biosensor via Optimization of Waveguide and Microcavity Structures. IEEE Sensors Journal, 2017, 17, 1608-1616.	4.7	16
77	CO ₂ Conversion Performance of Perovskite Oxides Designed with Abundant Metals. Industrial & Designeering Chemistry Research, 2019, 58, 12551-12560.	3.7	16
78	Simulations of O2 adsorbed on graphite at 45 K: the monolayer to bilayer transition. Canadian Journal of Chemistry, 1988, 66, 866-874.	1.1	15
79	VIRIAL COEFFICIENTS FOR THE HARD GAUSSIAN OVERLAP MODEL. International Journal of Modern Physics C, 1999, 10, 361-374.	1.7	15
80	Sorption of benzene, tetrahydrofuran and 2-butanone by poly(vinyl acetate) at 323.15 K using a quartz crystal balance. Fluid Phase Equilibria, 2001, 179, 181-191.	2.5	15
81	Studies on sputtering process of multicomponent Zr–Ti–Cu–Ni–Be alloy thin films. Vacuum, 2006, 80, 406-414.	3.5	15
82	Mesoporous Silica Supported Perovskite Oxides for Low Temperature Thermochemical CO ₂ Conversion. ChemCatChem, 2020, 12, 6317-6328.	3.7	15
83	Simulations of the thermodynamic properties of krypton adsorbed on graphite at 100 K. The Journal of Physical Chemistry, 1988, 92, 3285-3291.	2.9	14
84	Total Vapor Pressure Measurements for 2-Ethoxyethanol with Methyl Acetate, Ethyl Acetate, Propyl Acetate, and Ethyl Propionate at 313.15 K and for 2-Ethoxyethanol with Methyl Formate at 308.15 K. Journal of Chemical & Engineering Data, 2003, 48, 92-96.	1.9	14
85	Acoustic streaming in second-order fluids. Physics of Fluids, 2020, 32, .	4.0	14
86	Total Vapor Pressure Measurements for 2-Ethoxyethanol with Methanol, Ethanol, 1-Propanol, and 2-Propanol at 313.15 K. Journal of Chemical & Engineering Data, 2002, 47, 1355-1358.	1.9	13
87	Concentrationâ€dependent effects of alendronate and pamidronate functionalized gold nanoparticles on osteoclast and osteoblast viability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 21-29.	3.4	13
88	Degradable poly(catechin) nanoparticles as a versatile therapeutic agent. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1104-1115.	3.4	13
89	Total Pressure Measurements for Chloroform + Acetone + Toluene at 303.15 K. Journal of Chemical & Engineering Data, 1994, 39, 488-492.	1.9	12
90	Aldosterone up-regulates voltage-gated potassium currents and NKCC1 protein membrane fractions. Scientific Reports, 2020, 10, 15604.	3.3	12

#	Article	IF	CITATIONS
91	Orthogonal surface acoustic wave device based on langasite for simultaneous biosensing and biofouling removal. Applied Physics Letters, 2009, 94, 263503.	3.3	11
92	Oxygen Permeability of Fiber-Reinforced Polymers. Journal of Composites for Construction, 2011, 15, 513-521.	3.2	11
93	Unraveling the Autonomous Motion of Polymerâ€Based Catalytic Micromotors Under Chemicalâ°'Acoustic Hybrid Power. Advanced NanoBiomed Research, 2021, 1, 2000009.	3.6	11
94	Total Vapor Pressure Measurements for 2-Ethoxyethanol with Carbon Tetrachloride, Chloroform, and Dichloromethane at 303.15 K. Journal of Chemical & Engineering Data, 2004, 49, 510-513.	1.9	10
95	Enhancement of acoustic streaming induced flow on a focused surface acoustic wave device: Implications for biosensing and microfluidics. Journal of Applied Physics, 2010, 107, 024503.	2.5	10
96	Plasmonic photocatalytic reactor design: Use of multilayered films for improved organic degradation rates in a recirculating flow reactor. Chemical Engineering Journal, 2017, 314, 11-18.	12.7	10
97	Total Pressure Measurements for Chloroform + Acetone + 2-Butanone at 303.15 K. Journal of Chemical & Engineering Data, 1995, 40, 210-213.	1.9	9
98	High frequency thickness shear mode devices for organic vapor sensing. Sensors and Actuators B: Chemical, 2007, 122, 635-643.	7.8	9
99	Finite-Element Modeling of a Hexagonal Surface Acoustic Wave Device Based on \${m LiNbO}_{3}\$ Substrate. IEEE Sensors Journal, 2009, 9, 329-339.	4.7	9
100	Photoresponse of the AlN-Based SAW Device on Polymeric and Silicon Substrates. IEEE Sensors Journal, 2021, 21, 9675-9681.	4.7	9
101	Ni-induced destabilization dynamics of crystalline zinc borohydride. Applied Physics Letters, 2008, 92, 134101.	3.3	8
102	Sorption of Benzene, Dichloroethane, Dichloromethane, and Chloroform by Poly(ethylene glycol), Polycaprolactone, and Their Copolymers at 298.15 K Using a Quartz Crystal Microbalance. Journal of Chemical & Chem	1.9	8
103	Predicting the Chiral Enrichment of Metallic SWCNTs on Ni–Cu Bimetallic Surfaces. Chemistry of Materials, 2014, 26, 4943-4950.	6.7	7
104	Electron injection study of photoexcitation effects on supported subnanometer Pt clusters for CO2 photoreduction. Physical Chemistry Chemical Physics, 2018, 20, 15926-15938.	2.8	7
105	Design of a Portable Orthogonal Surface Acoustic Wave Sensor System for Simultaneous Sensing and Removal of Nonspecifically Bound Proteins. Sensors, 2019, 19, 3876.	3.8	7
106	Engineering surface and morphology of La/WO ₃ for electrochemical oxygen reduction. CrystEngComm, 2020, 22, 2397-2405.	2.6	7
107	Unravelling the Origin of Enhanced Electrochemical Performance in CoSe ₂ â^'MoSe ₂ Interfaces. ChemCatChem, 2021, 13, 2017-2024.	3.7	7
108	Removal of Non-Specifically Bound Proteins Using Rayleigh Waves Generated on ST-Quartz Substrates. Sensors, 2022, 22, 4096.	3.8	7

#	Article	IF	CITATIONS
109	Electrochemical Sensor Based on Carbon-Incorporated WSe ₂ Nanosheets for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. IEEE Sensors Journal, 2022, 22, 14952-14958.	4.7	7
110	Conformation effects on the absorption spectra of macromolecules. Macromolecules, 1993, 26, 479-484.	4.8	6
111	Sorption of Benzene, Dichloromethane, <i>n</i> -Propyl Acetate, and 2-Butanone by Poly(methyl) Tj ETQq1 1 0.78 Balance. Journal of Chemical & Data, 2011, 56, 4772-4777.		/Overlock 6
112	Oxygen Permeability of FRP-Concrete Repair Systems. Journal of Composites for Construction, 2012, 16, 277-285.	3.2	6
113	Interface Engineering of Metal Oxynitride Lateral Heterojunctions for Photocatalytic and Optoelectronic Applications. Journal of Physical Chemistry C, 2018, 122, 22504-22511.	3.1	6
114	Intrinsically strained noble metal-free oxynitrides for solar photoreduction of CO2. Dalton Transactions, 2019, 48, 12738-12748.	3.3	6
115	First principles study to identify the reversible reaction step of a multinary hydrogen storage "Li–Mg–B–N–H―system. International Journal of Hydrogen Energy, 2010, 35, 9002-9011.	7.1	5
116	Computational design of quartz crystal nanobalance for uniform sensitivity distribution. , 2010, , .		5
117	Quenching of Fluorescence from CdSe/ZnS Nanocrystal QDs Near Copper Nanoparticles in Aqueous Solution. Plasmonics, 2011, 6, 735-740.	3.4	5
118	Polymer–Plasticizer Coatings for BTEX Detection Using Quartz Crystal Microbalance. Sensors, 2021, 21, 5667.	3.8	5
119	Role of Ba in low temperature thermochemical conversion of carbon dioxide with LaFeO3 perovskite oxides. Journal of CO2 Utilization, 2021, 51, 101638.	6.8	5
120	Enhancement in ultrasonic micro-transport using focused inter-digital transducers in a surface acoustic wave device: Fluid-structure interaction study. , 2009, , .		4
121	Fluorescence study of protein immobilization on poly(4-hydroxyphenyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T	f 50 262 To	d_4 (thiopher
122	Measurement of Oxygen Diffusivity and Permeability in Polymers Using Fluorescence Microscopy. Microscopy and Microanalysis, 2010, 16, 725-734.	0.4	4
123	Sorption of Benzene, Dichloromethane, and 2-Butanone by Poly(methyl methacrylate), Poly(butyl) Tj ETQq1 1 0.75 & amp; Engineering Data, 2016, 61, 3877-3882.		T /Overlo <mark>ck</mark> 4
124	Sorption of Benzene, 1,2-Dichloroethane, Dichloromethane, and Chloroform by Polyethylene Glycol, Polycaprolactone, and their Triblock Copolymers at 298.15 K Using a Quartz Crystal Microbalance. Journal of Chemical & Data, 2018, 63, 3459-3464.	1.9	4
125	Sorption of Benzene, Toluene, and Ethylbenzene by Poly(ethyl methacrylate) and Plasticized Poly(ethyl) Tj ETQq1 Data, 2020, 65, 5046-5054.	1 0.78431 1.9	4 rgBT /Ove
126	A 3-D Finite Element Model of Surface Acoustic Wave Sensor Response. ECS Transactions, 2006, 1, 19-27.	0.5	3

#	Article	IF	Citations
127	Patterned electrodes for thickness shear mode quartz resonators to achieve uniform mass sensitivity distribution., 2008,,.		3
128	Design of mutually interacting multi-directional transducer configurations on a surface acoustic wave device for enhanced biosensing. , 2009 , , .		3
129	Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications. Applied Physics Letters, 2014, 104, 253501.	3.3	3
130	Sorption of Benzene, Dichloromethane, and n-Propyl Acetate by Poly(methyl methacrylate)/Polystyrene Copolymers at 323.15 K Using a Quartz Crystal Balance. Journal of Chemical & Engineering Data, 2018, 63, 2753-2757.	1,9	3
131	Triplet correlation functions for fluids of nonspherical molecules. Molecular Physics, 1989, 68, 659-669.	1.7	2
132	Synthesis and Characterization of Amorphous Metallic Alloy Thin Films for MEMS Applications. Materials Research Society Symposia Proceedings, 2003, 806, 315.	0.1	2
133	A novel three dimensional fluid-structure interaction finite element model of wave propagation in SAW device: Application to biosensing & mp;#x00026; microfluidics., 2009,,.		2
134	Design and fabrication of a SAW device with Ta filled microcavities inserted into its delay path for improved power transfer. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	2
135	Heating of Rayleigh surface acoustic wave devices in $128\hat{A}^{\circ}YX$ LiNbO<inf>3</inf> and ST X quartz substrates. , 2017 , , .		2
136	Light interaction with AlN-based SAW device fabricated on flexible and silicon substrate. , 2019, , .		2
137	Optical interconnects on a flexible substrate by multi-material hybrid additive and subtractive manufacturing. Additive Manufacturing, 2021, 48, 102409.	3.0	2
138	High Frequency Surface Acoustic Wave Devices Based on Multilayered LiNbO3/Diamond/AlN Substrates: A Finite Element Study. ECS Transactions, 2008, 13, 1-12.	0.5	1
139	Predicting the mechanism of removal of nonspecifically bound proteins in a surface acoustic wave biosensor: A fluid-solid interaction study. , 2008, , .		1
140	Finite Element modeling of hexagonal surface acoustic wave biosensor based on LiTaO <inf>3</inf> ., 2008,,.		1
141	Multi-scale modeling to study mechanism of biofouling elimination in a surface acoustic wave biosensor., 2011,,.		1
142	Liquid heating can cause denaturation of sensing layer in SAW biosensors. , 2013, , .		1
143	Comparison of Newtonian and non-Newtonian fluid dynamics on removal efficiency of non-specifically bound proteins in SAW biosensors. , 2013, , .		1
144	Design of SH-SAW phononic devices for highly sensitive and ultra-low power sensing applications. , 2014, , .		1

#	Article	IF	CITATIONS
145	Design and fabrication of SiO2 waveguide-based SAW sensors with filled microcavities., 2015,,.		1
146	Gold nanoparticles amplified surface acoustic wave biosensors for immunodetection., 2016,,.		1
147	Metal-enhanced immunofluorescence assays for detection of carcinoembryonic antigen. , 2017, , .		1
148	Predictive Framework for FRP-Concrete Corrosion Repair. Journal of Composites for Construction, 2020, 24, 04020068.	3.2	1
149	Sorption of Benzene, 2-Butanone, and Chloroform by Polybutadiene and its Copolymers with Polystyrene at 298.15 K Using a Quartz-Crystal Microbalance. Journal of Chemical & Engineering Data, 2021, 66, 243-248.	1.9	1
150	Sorption of Benzene, Toluene, and Ethylbenzene at Low Concentrations by Plasticized Poly(ethyl) Tj ETQq0 0 0 rg Chemical & Chemical	gBT /Overl 1.9	ock 10 Tf 50 1
151	Sensitive Biosensing Using Plasmonic Enhancement of Fluorescence by Rapid Thermal Annealed Silver Nanostructures. IEEE Sensors Journal, 2021, 21, 15917-15925.	4.7	1
152	Finite Element Modeling of Hexagonal Surface Acoustic Wave Device in LiNbO <inf>3</inf> ., 2007,,.		0
153	Engineering picogram level detection using high frequency surface acoustic wave chemical and biological sensors based on multilayered Diamond/AlN/LiNbO <inf>3</inf> substrates., 2011,,.		0
154	Influence of non-newtonian fluid dynamics on SAW induced acoustic streaming in view of biological applications., 2011,,.		0
155	Glucose Oxidase-Functionalized Nanodiamond Films for Biosensor Application. Materials Research Society Symposia Proceedings, 2011, 1282, 149.	0.1	0
156	Biomarker quantification at clinically relevant concentrations using metal enhanced fluorescence combined with surface acoustic waves. , 2014, , .		0
157	Microcavity assisted acoustic wave channeling can lead to high sensitivity and ultra-low power SAW sensors. , 2015, , .		0
158	Notice of Removal: Chemical and biological sensing using acoustic wave propagation and nano-scale phenomena., 2017,,.		0
159	Guest Editorial Special Issue on Selected Papers From the IEEE SENSORS 2016 Conference. IEEE Sensors Journal, 2017, 17, 7222-7222.	4.7	0
160	Portable Fluorescence Detection System with Rayleigh Waves Removing Nonspecifically Bound Proteins., 2019,,.		0
161	Laser Enhanced Direct Print Additive Manufacturing of Embedded Circular Cross-Section Optical Fiber Interconnects for Board Level Computing Devices. Additive Manufacturing, 2020, 34, 101227.	3.0	0
162	Stability and Kinetics of Silica-Protected Plasmonic Photocatalysts for Gas-Phase Degradation of Total Volatile Organic Compounds. Catalysis Letters, 0, , 1.	2.6	0

#	Article	lF	CITATIONS
163	Quantification of CEA from Human Plasma using Plasmonic Enhancement of Fluorescence and Acoustic Streaming. , 2020, , .		О