Alice Y Ting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6356512/publications.pdf Version: 2024-02-01

		19608	29081
98	21,810	61	104
papers	citations	h-index	g-index
141	141	141	23250
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Deep Single-Cell-Type Proteome Profiling of Mouse Brain by Nonsurgical AAV-Mediated Proximity Labeling. Analytical Chemistry, 2022, 94, 5325-5334.	3.2	17
2	A Dual-Purpose Real-Time Indicator and Transcriptional Integrator for Calcium Detection in Living Cells. ACS Synthetic Biology, 2022, 11, 1086-1095.	1.9	5
3	Functional interactomes of the Ebola virus polymerase identified by proximity proteomics in the context of viral replication. Cell Reports, 2022, 38, 110544.	2.9	7
4	Transcription factor Acj6 controls dendrite targeting via a combinatorial cell-surface code. Neuron, 2022, 110, 2299-2314.e8.	3.8	16
5	Proximity interactome analysis of Lassa polymerase reveals eRF3a/CSPT1 as a druggable target for host-directed antivirals. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
6	Deciphering molecular interactions by proximity labeling. Nature Methods, 2021, 18, 133-143.	9.0	259
7	A Toolbox for Efficient Proximity-Dependent Biotinylation in Zebrafish Embryos. Molecular and Cellular Proteomics, 2021, 20, 100128.	2.5	11
8	Proteomics of protein trafficking by in vivo tissue-specific labeling. Nature Communications, 2021, 12, 2382.	5.8	51
9	Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery. Nature Communications, 2021, 12, 4980.	5.8	47
10	An engineered transcriptional reporter of protein localization identifies regulators of mitochondrial and ER membrane protein trafficking in high-throughput CRISPRi screens. ELife, 2021, 10,	2.8	17
11	Proximity labeling reveals non-centrosomal microtubule-organizing center components required for microtubule growth and localization. Current Biology, 2021, 31, 3586-3600.e11.	1.8	31
12	Proximity-Labeling Reveals Novel Host and Parasite Proteins at the <i>Toxoplasma</i> Parasitophorous Vacuole Membrane. MBio, 2021, 12, e0026021.	1.8	26
13	Directed evolution improves the catalytic efficiency of TEV protease. Nature Methods, 2020, 17, 167-174.	9.0	69
14	Proximity labeling in mammalian cells with TurboID and split-TurboID. Nature Protocols, 2020, 15, 3971-3999.	5.5	171
15	RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22068-22079.	3.3	105
16	A Molecular Calcium Integrator Reveals a Striatal Cell Type Driving Aversion. Cell, 2020, 183, 2003-2019.e16.	13.5	40
17	Split-TurboID enables contact-dependent proximity labeling in cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12143-12154.	3.3	179
18	Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators. Cell, 2020, 180, 373-386.e15.	13.5	118

#	Article	IF	CITATIONS
19	LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome. ELife, 2020, 9, .	2.8	27
20	Transcriptional readout of neuronal activity via an engineered Ca ²⁺ -activated protease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33186-33196.	3.3	20
21	TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nature Communications, 2019, 10, 3252.	5.8	159
22	Atlas of Subcellular RNA Localization Revealed by APEX-Seq. Cell, 2019, 178, 473-490.e26.	13.5	400
23	Directed Evolution of Split APEX2 Peroxidase. ACS Chemical Biology, 2019, 14, 619-635.	1.6	113
24	Molecular tools for imaging and recording neuronal activity. Nature Chemical Biology, 2019, 15, 101-110.	3.9	67
25	Luciferase-LOV BRET enables versatile and specific transcriptional readout of cellular protein-protein interactions. ELife, 2019, 8, .	2.8	52
26	Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. ELife, 2019, 8, .	2.8	163
27	Proximity labeling: spatially resolved proteomic mapping for neurobiology. Current Opinion in Neurobiology, 2018, 50, 17-23.	2.0	92
28	Single nucleotide polymorphisms alter kinase anchoring and the subcellular targeting of A-kinase anchoring proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11465-E11474.	3.3	41
29	Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 2018, 36, 880-887.	9.4	1,103
30	In Situ Peroxidase Labeling and Mass-Spectrometry Connects Alpha-Synuclein Directly to Endocytic Trafficking and mRNA Metabolism in Neurons. Cell Systems, 2017, 4, 242-250.e4.	2.9	91
31	Proximity Biotinylation as a Method for Mapping Proteins Associated with mtDNA in Living Cells. Cell Chemical Biology, 2017, 24, 404-414.	2.5	102
32	Beyond Immunoprecipitation: Exploring New Interaction Spaces with Proximity Biotinylation. Biochemistry, 2017, 56, 3297-3298.	1.2	8
33	An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells. Cell, 2017, 169, 350-360.e12.	13.5	322
34	RNA targeting with CRISPR–Cas13. Nature, 2017, 550, 280-284.	13.7	1,442
35	Antibodies to biotin enable large-scale detection of biotinylation sites on proteins. Nature Methods, 2017, 14, 1167-1170.	9.0	114
36	The Dopamine Transporter Recycles via a Retromer-Dependent Postendocytic Mechanism: Tracking Studies Using a Novel Fluorophore-Coupling Approach. Journal of Neuroscience, 2017, 37, 9438-9452.	1.7	52

#	Article	IF	CITATIONS
37	Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nature Protocols, 2017, 12, 1792-1816.	5.5	146
38	A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nature Biotechnology, 2017, 35, 864-871.	9.4	165
39	Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. ELife, 2017, 6, .	2.8	276
40	Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. ELife, 2017, 6, .	2.8	143
41	Time-gated detection of protein-protein interactions with transcriptional readout. ELife, 2017, 6, .	2.8	64
42	Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts. Cell, 2016, 166, 1295-1307.e21.	13.5	324
43	A split horseradish peroxidase for the detection of intercellular protein–protein interactions and sensitive visualization of synapses. Nature Biotechnology, 2016, 34, 774-780.	9.4	140
44	APEX Fingerprinting Reveals the Subcellular Localization of Proteins of Interest. Cell Reports, 2016, 15, 1837-1847.	2.9	153
45	Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nature Protocols, 2016, 11, 456-475.	5.5	411
46	A Mechanical Switch Couples T Cell Receptor Triggering to the Cytoplasmic Juxtamembrane Regions of CD3ζζ. Immunity, 2015, 43, 227-239.	6.6	107
47	Proteomic mapping in live <i>Drosophila</i> tissues using an engineered ascorbate peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12093-12098.	3.3	143
48	Directed evolution of APEX2 for electron microscopy and proximity labeling. Nature Methods, 2015, 12, 51-54.	9.0	1,014
49	Computational design of a red fluorophore ligase for site-specific protein labeling in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4551-9.	3.3	62
50	Antibiotics induce redox-related physiological alterations as part of their lethality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2100-9.	3.3	698
51	Proteomic Mapping of the Human Mitochondrial Intermembrane Space in Live Cells via Ratiometric APEX Tagging. Molecular Cell, 2014, 55, 332-341.	4.5	414
52	Site-specific protein labeling using PRIME and chelation-assisted click chemistry. Nature Protocols, 2013, 8, 1620-1634.	5.5	84
53	Proteomic Mapping of Mitochondria in Living Cells via Spatially Restricted Enzymatic Tagging. Science, 2013, 339, 1328-1331.	6.0	1,023
54	IDOL Stimulates Clathrin-Independent Endocytosis and Multivesicular Body-Mediated Lysosomal Degradation of the Low-Density Lipoprotein Receptor. Molecular and Cellular Biology, 2013, 33, 1503-1514.	1.1	68

#	Article	IF	CITATIONS
55	Imaging Trans-Cellular Neurexin-Neuroligin Interactions by Enzymatic Probe Ligation. PLoS ONE, 2013, 8, e52823.	1.1	37
56	Quantum Dot Targeting with Lipoic Acid Ligase and HaloTag for Single-Molecule Imaging on Living Cells. ACS Nano, 2012, 6, 11080-11087.	7.3	67
57	Fluorophore Targeting to Cellular Proteins via Enzyme-Mediated Azide Ligation and Strain-Promoted Cycloaddition. Journal of the American Chemical Society, 2012, 134, 3720-3728.	6.6	114
58	Diels–Alder Cycloaddition for Fluorophore Targeting to Specific Proteins inside Living Cells. Journal of the American Chemical Society, 2012, 134, 792-795.	6.6	230
59	Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nature Biotechnology, 2012, 30, 1143-1148.	9.4	584
60	Fast, Cell ompatible Click Chemistry with Copper helating Azides for Biomolecular Labeling. Angewandte Chemie - International Edition, 2012, 51, 5852-5856.	7.2	281
61	Siteâ€Specific Protein Modification Using Lipoic Acid Ligase and Bisâ€Aryl Hydrazone Formation. ChemBioChem, 2012, 13, 888-894.	1.3	58
62	Imaging LDL Receptor Oligomerization during Endocytosis Using a Co-internalization Assay. ACS Chemical Biology, 2011, 6, 308-313.	1.6	23
63	Imaging Protein–Protein Interactions inside Living Cells via Interaction-Dependent Fluorophore Ligation. Journal of the American Chemical Society, 2011, 133, 19769-19776.	6.6	48
64	Synthesis of 7â€Aminocoumarin by Buchwald–Hartwig Cross Coupling for Specific Protein Labeling in Living Cells. ChemBioChem, 2011, 12, 65-70.	1.3	48
65	A fluorophore ligase for site-specific protein labeling inside living cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10914-10919.	3.3	268
66	The heparin-binding domain of HB-EGF mediates localization to sites of cell-cell contact and prevents HB-EGF proteolytic release. Journal of Cell Science, 2010, 123, 2308-2318.	1.2	40
67	Pyrenebutyrate Leads to Cellular Binding, Not Intracellular Delivery, of Polyarginine Quantum Dots. Journal of Physical Chemistry Letters, 2010, 1, 1312-1315.	2.1	30
68	InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared. Journal of the American Chemical Society, 2010, 132, 470-471.	6.6	177
69	Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. Journal of the American Chemical Society, 2010, 132, 472-483.	6.6	271
70	Cytoplasmic Relaxation of Active Eph Controls Ephrin Shedding by ADAM10. PLoS Biology, 2009, 7, e1000215.	2.6	72
71	Yeast Display Evolution of a Kinetically Efficient 13-Amino Acid Substrate for Lipoic Acid Ligase. Journal of the American Chemical Society, 2009, 131, 16430-16438.	6.6	94
72	Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging. Journal of the American Chemical Society, 2008, 130, 1274-1284.	6.6	583

#	Article	IF	CITATIONS
73	Expanding the Substrate Tolerance of Biotin Ligase through Exploration of Enzymes from Diverse Species. Journal of the American Chemical Society, 2008, 130, 1160-1162.	6.6	69
74	Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nature Methods, 2008, 5, 397-399.	9.0	398
75	Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nature Protocols, 2008, 3, 534-545.	5.5	221
76	Fluorescent probes for super-resolution imaging in living cells. Nature Reviews Molecular Cell Biology, 2008, 9, 929-943.	16.1	1,187
77	Proteinâ^'Protein Interaction Detection in Vitro and in Cells by Proximity Biotinylation. Journal of the American Chemical Society, 2008, 130, 9251-9253.	6.6	110
78	Site-specific Modification of AAV Vector Particles With Biophysical Probes and Targeting Ligands Using Biotin Ligase. Molecular Therapy, 2008, 16, 1467-1473.	3.7	52
79	Phage Display Evolution of a Peptide Substrate for Yeast Biotin Ligase and Application to Two-Color Quantum Dot Labeling of Cell Surface Proteins. Journal of the American Chemical Society, 2007, 129, 6619-6625.	6.6	71
80	Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nature Biotechnology, 2007, 25, 1483-1487.	9.4	340
81	Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits. Journal of Neuroscience, 2006, 26, 10380-10386.	1.7	708
82	Transglutaminase-Catalyzed Site-Specific Conjugation of Small-Molecule Probes to Proteins in Vitro and on the Surface of Living Cells. Journal of the American Chemical Society, 2006, 128, 4542-4543.	6.6	219
83	Synthesis of a Ketone Analogue of Biotin via the Intramolecular Pausonâ~'Khand Reaction. Organic Letters, 2006, 8, 4593-4595.	2.4	12
84	Giving cells a new sugar-coating. Nature Chemical Biology, 2006, 2, 127-128.	3.9	4
85	A monovalent streptavidin with a single femtomolar biotin binding site. Nature Methods, 2006, 3, 267-273.	9.0	334
86	Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nature Methods, 2005, 2, 99-104.	9.0	617
87	Site-specific labeling of proteins with small molecules in live cells. Current Opinion in Biotechnology, 2005, 16, 35-40.	3.3	313
88	Targeting quantum dots to surface proteins in living cells with biotin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7583-7588.	3.3	516
89	A Genetically Encoded Fluorescent Reporter of Histone Phosphorylation in Living Cells. Angewandte Chemie - International Edition, 2004, 43, 2940-2943.	7.2	42
90	Genetically Encoded Fluorescent Reporters of Histone Methylation in Living Cells. Journal of the American Chemical Society, 2004, 126, 5982-5983.	6.6	94

#	Article	IF	CITATIONS
91	SIGNAL TRANSDUCTION: Decoding NF- <font 1189-1190.<="" 2002,="" 298,="" face="." science,="" td=""><td>6.0</td><td>63</td>	6.0	63
92	Creating new fluorescent probes for cell biology. Nature Reviews Molecular Cell Biology, 2002, 3, 906-918.	16.1	1,874
93	Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nature Neuroscience, 2001, 4, 239-246.	7.1	123
94	Temporal fluctuations of fluorescence resonance energy transfer between two dyes conjugated to a single protein. Chemical Physics, 1999, 247, 107-118.	0.9	97
95	Energetic Analysis of an Engineered Cationâ^'ï€ Interaction in Staphylococcal Nuclease. Journal of the American Chemical Society, 1998, 120, 7135-7136.	6.6	43
96	Analysis of Backbone Hydrogen Bonding in a β-Turn of Staphylococcal Nuclease. Journal of the American Chemical Society, 1997, 119, 12667-12668.	6.6	34
97	Molecular Cloning of aSchizosaccharomyces pombecDNA Encoding Lanosterol Synthase and Investigation of Conserved Tryptophan Residues. Biochemical and Biophysical Research Communications, 1996, 219, 327-331.	1.0	73
98	Improved enantioselective dihydroxylation of bishomoallylic alcohol derivatives using a mechanistically inspired bis-cinchona alkaloid catalyst. Tetrahedron Letters, 1996, 37, 1735-1738.	0.7	31