Fu-Yuan Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6355809/publications.pdf Version: 2024-02-01

ΕΠ-ΥΠΑΝ ΖΗΠ

#	Article	IF	CITATIONS
1	SWATH-MS Approach to Discover Novel Protein Targets and Pathways in Response to Abscisic. Methods in Molecular Biology, 2022, 2462, 191-200.	0.9	0
2	ABA Mediates Plant Development and Abiotic Stress via Alternative Splicing. International Journal of Molecular Sciences, 2022, 23, 3796.	4.1	22
3	Deficiency in flavonoid biosynthesis genes <i>CHS</i> , <i>CHI</i> , and <i>CHIL</i> alters rice flavonoid and lignin profiles. Plant Physiology, 2022, 188, 1993-2011.	4.8	18
4	Alternative Splicing and Its Roles in Plant Metabolism. International Journal of Molecular Sciences, 2022, 23, 7355.	4.1	20
5	SWATH-MS-Based Proteomics: Strategies and Applications in Plants. Trends in Biotechnology, 2021, 39, 433-437.	9.3	38
6	High-Throughput Sequencing Reveals the Regulatory Networks of Transcriptome and Small RNAs During the Defense Against Marssonina brunnea in Poplar. Frontiers in Plant Science, 2021, 12, 719549.	3.6	5
7	Effect of Alternate Wetting and Drying Irrigation on the Nutritional Qualities of Milled Rice. Frontiers in Plant Science, 2021, 12, 721160.	3.6	6
8	Global proteome response to Pb(II) toxicity in poplar using SWATH-MS-based quantitative proteomics investigation. Ecotoxicology and Environmental Safety, 2021, 220, 112410.	6.0	23
9	Phylogenetic Comparison and Splicing Analysis of the U1 snRNP-specific Protein U1C in Eukaryotes. Frontiers in Molecular Biosciences, 2021, 8, 696319.	3.5	1
10	SWATH-MS based quantitive proteomics reveal regulatory metabolism and networks of androdioecy breeding system in Osmanthus fragrans. BMC Plant Biology, 2021, 21, 468.	3.6	1
11	Comparative transcriptome analysis of coleorhiza development in japonica and Indica rice. BMC Plant Biology, 2021, 21, 514.	3.6	7
12	Transcriptome changes in seeds during coleorhiza hair formation in rice. Crop Journal, 2021, , .	5.2	2
13	Alternative splicing is a Sorghum bicolor defense response to fungal infection. Planta, 2020, 251, 14.	3.2	18
14	Full-Length Transcript-Based Proteogenomics of Rice Improves Its Genome and Proteome Annotation. Plant Physiology, 2020, 182, 1510-1526.	4.8	53
15	Quantifying Plant Dynamic Proteomes by SWATH-based Mass Spectrometry. Trends in Plant Science, 2020, 25, 1171-1172.	8.8	11
16	Systematic characterization of the branch point binding protein, splicing factor 1, gene family in plant development and stress responses. BMC Plant Biology, 2020, 20, 379.	3.6	5
17	Flavonoids are indispensable for complete male fertility in rice. Journal of Experimental Botany, 2020, 71, 4715-4728.	4.8	48
18	Emerging Functions of Plant Serine/Arginine-Rich (SR) Proteins: Lessons from Animals. Critical Reviews in Plant Sciences, 2020, 39, 173-194.	5.7	19

Fu-Yuan Zhu

#	Article	IF	CITATIONS
19	Phylogenetic comparison of 5′ splice site determination in central spliceosomal proteins of the <i>U1â€70K</i> gene family, in response to developmental cues and stress conditions. Plant Journal, 2020, 103, 357-378.	5.7	30
20	Alternative splicing and its regulatory role in woody plants. Tree Physiology, 2020, 40, 1475-1486.	3.1	31
21	Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. Planta, 2019, 250, 1355-1369.	3.2	31
22	SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant. BMC Plant Biology, 2019, 19, 445.	3.6	23
23	Recruitment of specific flavonoid Bâ€ring hydroxylases for two independent biosynthesis pathways of flavoneâ€derived metabolites in grasses. New Phytologist, 2019, 223, 204-219.	7.3	38
24	Rhizosheath formation and involvement in foxtail millet (<i>Setaria italica</i>) root growth under drought stress. Journal of Integrative Plant Biology, 2019, 61, 449-462.	8.5	58
25	Alternative splicing and translation play important roles in hypoxic germination in rice. Journal of Experimental Botany, 2019, 70, 817-833.	4.8	51
26	Natural variation in the promoter of rice calcineurin Bâ€like protein10 (Os <scp>CBL</scp> 10) affects flooding tolerance during seed germination among rice subspecies. Plant Journal, 2018, 94, 612-625.	5.7	42
27	Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors. BMC Plant Biology, 2018, 18, 256.	3.6	13
28	SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses. Journal of Proteomics, 2018, 187, 161-170.	2.4	32
29	Comparative performance of the BGISEQ-500 and Illumina HiSeq4000 sequencing platforms for transcriptome analysis in plants. Plant Methods, 2018, 14, 69.	4.3	128
30	Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant Journal, 2017, 91, 518-533.	5.7	156
31	A Phylogenetically Informed Comparison of GH1 Hydrolases between Arabidopsis and Rice Response to Stressors. Frontiers in Plant Science, 2017, 8, 350.	3.6	27
32	iTRAQ-based quantitative proteomic analysis in vernalization-treated faba bean (Vicia faba L.). PLoS ONE, 2017, 12, e0187436.	2.5	3
33	SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Frontiers in Plant Science, 2016, 7, 1926.	3.6	15
34	SWATH-MS Quantitative Proteomic Investigation Reveals a Role of Jasmonic Acid during Lead Response in <i>Arabidopsis</i> . Journal of Proteome Research, 2016, 15, 3528-3539.	3.7	33
35	Phosphoproteomic analysis of the non-seed vascular plant model Selaginella moellendorffii. Proteome Science, 2014, 12, 16.	1.7	16
36	Sorghum Extracellular Leucine-Rich Repeat Protein SbLRR2 Mediates Lead Tolerance in Transgenic Arabidopsis. Plant and Cell Physiology, 2013, 54, 1549-1559.	3.1	31