Fu-Yuan Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6355809/publications.pdf

Version: 2024-02-01

36	1,055	18	31
papers	citations	h-index	g-index
39	39	39	1147 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant Journal, 2017, 91, 518-533.	5.7	156
2	Comparative performance of the BGISEQ-500 and Illumina HiSeq4000 sequencing platforms for transcriptome analysis in plants. Plant Methods, 2018, 14, 69.	4.3	128
3	Rhizosheath formation and involvement in foxtail millet (<i>Setaria italica</i>) root growth under drought stress. Journal of Integrative Plant Biology, 2019, 61, 449-462.	8.5	58
4	Full-Length Transcript-Based Proteogenomics of Rice Improves Its Genome and Proteome Annotation. Plant Physiology, 2020, 182, 1510-1526.	4.8	53
5	Alternative splicing and translation play important roles in hypoxic germination in rice. Journal of Experimental Botany, 2019, 70, 817-833.	4.8	51
6	Flavonoids are indispensable for complete male fertility in rice. Journal of Experimental Botany, 2020, 71, 4715-4728.	4.8	48
7	Natural variation in the promoter of rice calcineurin Bâ€like protein10 (Os <scp>CBL</scp> 10) affects flooding tolerance during seed germination among rice subspecies. Plant Journal, 2018, 94, 612-625.	5.7	42
8	Recruitment of specific flavonoid Bâ€ring hydroxylases for two independent biosynthesis pathways of flavoneâ€derived metabolites in grasses. New Phytologist, 2019, 223, 204-219.	7.3	38
9	SWATH-MS-Based Proteomics: Strategies and Applications in Plants. Trends in Biotechnology, 2021, 39, 433-437.	9.3	38
10	SWATH-MS Quantitative Proteomic Investigation Reveals a Role of Jasmonic Acid during Lead Response in <i>Arabidopsis</i> . Journal of Proteome Research, 2016, 15, 3528-3539.	3.7	33
11	SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses. Journal of Proteomics, 2018, 187, 161-170.	2.4	32
12	Sorghum Extracellular Leucine-Rich Repeat Protein SbLRR2 Mediates Lead Tolerance in Transgenic Arabidopsis. Plant and Cell Physiology, 2013, 54, 1549-1559.	3.1	31
13	Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. Planta, 2019, 250, 1355-1369.	3.2	31
14	Alternative splicing and its regulatory role in woody plants. Tree Physiology, 2020, 40, 1475-1486.	3.1	31
15	Phylogenetic comparison of 5′ splice site determination in central spliceosomal proteins of the <i>U1â€₹0K</i> gene family, in response to developmental cues and stress conditions. Plant Journal, 2020, 103, 357-378.	5.7	30
16	A Phylogenetically Informed Comparison of GH1 Hydrolases between Arabidopsis and Rice Response to Stressors. Frontiers in Plant Science, 2017, 8, 350.	3.6	27
17	SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant. BMC Plant Biology, 2019, 19, 445.	3.6	23
18	Global proteome response to Pb(II) toxicity in poplar using SWATH-MS-based quantitative proteomics investigation. Ecotoxicology and Environmental Safety, 2021, 220, 112410.	6.0	23

#	Article	IF	CITATIONS
19	ABA Mediates Plant Development and Abiotic Stress via Alternative Splicing. International Journal of Molecular Sciences, 2022, 23, 3796.	4.1	22
20	Alternative Splicing and Its Roles in Plant Metabolism. International Journal of Molecular Sciences, 2022, 23, 7355.	4.1	20
21	Emerging Functions of Plant Serine/Arginine-Rich (SR) Proteins: Lessons from Animals. Critical Reviews in Plant Sciences, 2020, 39, 173-194.	5.7	19
22	Alternative splicing is a Sorghum bicolor defense response to fungal infection. Planta, 2020, 251, 14.	3.2	18
23	Deficiency in flavonoid biosynthesis genes <i>CHS</i> , <i>CHI</i> , and <i>CHIL</i> alters rice flavonoid and lignin profiles. Plant Physiology, 2022, 188, 1993-2011.	4.8	18
24	Phosphoproteomic analysis of the non-seed vascular plant model Selaginella moellendorffii. Proteome Science, 2014, 12, 16.	1.7	16
25	SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Frontiers in Plant Science, 2016, 7, 1926.	3 . 6	15
26	Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors. BMC Plant Biology, 2018, 18, 256.	3.6	13
27	Quantifying Plant Dynamic Proteomes by SWATH-based Mass Spectrometry. Trends in Plant Science, 2020, 25, 1171-1172.	8.8	11
28	Comparative transcriptome analysis of coleorhiza development in japonica and Indica rice. BMC Plant Biology, 2021, 21, 514.	3.6	7
29	Effect of Alternate Wetting and Drying Irrigation on the Nutritional Qualities of Milled Rice. Frontiers in Plant Science, 2021, 12, 721160.	3.6	6
30	Systematic characterization of the branch point binding protein, splicing factor 1, gene family in plant development and stress responses. BMC Plant Biology, 2020, 20, 379.	3.6	5
31	High-Throughput Sequencing Reveals the Regulatory Networks of Transcriptome and Small RNAs During the Defense Against Marssonina brunnea in Poplar. Frontiers in Plant Science, 2021, 12, 719549.	3.6	5
32	iTRAQ-based quantitative proteomic analysis in vernalization-treated faba bean (Vicia faba L.). PLoS ONE, 2017, 12, e0187436.	2.5	3
33	Transcriptome changes in seeds during coleorhiza hair formation in rice. Crop Journal, 2021, , .	5.2	2
34	Phylogenetic Comparison and Splicing Analysis of the U1 snRNP-specific Protein U1C in Eukaryotes. Frontiers in Molecular Biosciences, 2021, 8, 696319.	3.5	1
35	SWATH-MS based quantitive proteomics reveal regulatory metabolism and networks of androdioecy breeding system in Osmanthus fragrans. BMC Plant Biology, 2021, 21, 468.	3.6	1
36	SWATH-MS Approach to Discover Novel Protein Targets and Pathways in Response to Abscisic. Methods in Molecular Biology, 2022, 2462, 191-200.	0.9	0